ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 1 Основы гидравлики - Кейсы/Задачи №33687

«ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 1 Основы гидравлики» - Кейсы/Задачи

  • 11.10.2015
  • 1
  • 3042

Содержание

Введение

Выдержка из текста работы

Заключение

Список литературы

Примечания

фото автора

Автор: Pingvin78

Содержание

1.3. Состав продуктов горения 1 кг коксового газа (в кг)) СО2 - 1,45; М2 =8,74; Н2О-1,92. Найти объемный состав продуктов горения.

1.4. Разрежение в осушительной башне сернокислотного завода измеряется U-образным тягомером наполненным серной кислотой плотностью 1800 кг/м3. Показание тягомера 3 см. Каково абсолютное давление в башне, выраженное в Па, если барометрическое давление составляет 750 мм рт. ст.?

1.5. Манометр на трубопроводе, заполненном жидкостью, показывает давление 0,18 кгс/см2. На какую высоту Н над точкой присоединения манометра поднимается в открытом пьезометре жидкость, находящаяся в трубопроводе, если эта жидкость: а) вода, б) четыреххлористый углерод (рис. 1.23)?

1.6. Высота уровня мазута в резервуаре 7,6 м (рис. 1.24). Относительная плотность мазута 0,96. На высоте 800 мм от дна в резервуаре имеется круглый лаз диаметром 760 мм, крышка которого прикрепляется болтами диаметром 10 мм. Принимая для болтов допустимое напряжение на разрыв 700 кгс/см2, определить необходимое число болтов. Определить также давление мазута на дно резервуара.

1.7. На малый поршень диаметром 40 мм ручного гидравли­ческого пресса (рис. 1.25) действует сила 589 Н (60 кгс). Пренебре­гая потерями, определить силу, действующую на прессуемое тело, если диаметр большого поршня 300 мм.

1.8. Динамический коэффициент вязкости жидкости при 50 °С равняется 30 мПа-с. Относительная плотность жидкости 0,9. Определить кинематический коэффициент вязкости.


Введение

1.20. В середине трубопровода с внутренним диаметром 320 мм установлена трубка Пито-Прандтля (рис. 1.4), дифференциальный манометр которой, заполненный водой, показывает разность уровней Н = 5,8 мм. По трубопроводу проходит под атмосфер­ным давлением сухой воздух при 21 °С. Определить массовый расход воздуха.

1.21. Из отверстия диаметром 10 мм в дне открытого бака, в котором поддерживается постоянный уровень жидкости высотой 900 мм, вытекает 750 дм3 жидкости в 1 ч. Определить коэф­фициент расхода. Через сколько времени опорожнится бак, если прекратить подачу в него жидкости? Диаметр бака 800 мм.

1.22. В напорный бак с площадью поперечного сечения 3 м2 притекает вода. В дне бака имеется спускное отверстие. При установившемся течении расход через отверстие равен притоку и уровень воды устанавливается на высоте 1 м. Если прекратить приток воды, уровень ее будет понижаться и через 100 с бак опорожнится. Определить приток воды в бак.

1.23. По горизонтальному трубопроводу с внутренним диаметром 200 мм протекает минеральное масло относительной плотности 0,9. В трубопроводе установлена диафрагма (рис. 1.3) с острыми краями (коэффициент расхода 0,61). Диаметр отверстия диафрагмы 76 мм. Ртутный дифманометр, присоединенный к диафрагме, показывает разность уровней 102 мм. Определить скорость масла в трубопроводе и его расход.

1.24. На трубопроводе диаметром 160x5 мм установлен расходомер «труба Вентури» (рис. 1.26), внутренний диаметр узкой части которой равен 60 мм. По трубопроводу проходит этан под атмосферным давлением при 25 °С. Показание водяного дифманометра трубы Вентури Н = 32 мм. Определить массовый расход этана, проходящего по трубопроводу (в кг/ч), приняв коэффициент расхода 0,97.

1.25. Определить потерю давления на трение при протекании воды по латунной трубе диаметром 19x2 мм, длиной 10 м. Скорость воды 2 м/с. Температура 55 °С. Принять шероховатость трубы ? = 0,005 мм.

1.26. Определить потерю давления на трение в свинцовом змеевике, по которому протекает 60%-ная серная кислота со скоростью 0,7 м/с при средней температуре 55 °С. Принять максимальную шероховатость свинцовых труб по табл.XII. Внутренний диаметр трубы змеевика 50 мм, диаметр витка змеевика 800 мм, число витков 20. Длину змеевика определить приближенно по числу витков и их диаметру.

1.27. По стальному трубопроводу внутренним диаметром 200 мм, длиной 1000 м передается водород в количестве 120 кг/ч. Среднее давление в сети 1530 мм рт. ст. Температура газа 27 0С. Определить потерю давления на трение.

1.28. Найти потерю давления на трение для пара в стальном паропроводе длиной 50 м, диаметром 108X4 мм. Давление пара Рабc = 6 кгс/см2 (~0,6 МПа), скорость пара 25 м/с.

1.29. Как изменится потеря давления на трение в газопроводе, по которому проходит азот, если при постоянном массовом расходе азота: а) увеличить давление (абсолютное) подаваемого азота с 1 до 10 кгс/см2 при неизменной температуре; б) повысить температуру азота от 0 до 80 °С при неизменном давлении.

1.30. По водопроводной трубе проходит 10 м*/ч воды. Сколько воды в 1 ч пропустит труба удвоенного диаметра при той же потере напора на трение? Коэффициент трения считать постоянным. Течение турбулентное.

1.31. По прямому горизонтальному трубопроводу длиной 150м необходимо подавать 10 м*/ч жидкости. Допускаемая потеря напора 10 м. Определить требуемый диаметр трубопровода, принимая коэффициент трения ? = 0,03.

1.32. Как изменится потеря давления на трение, если при неизменном расходе, жидкости уменьшить диаметр трубопровода вдвое? Задачу решить в двух вариантах: а) считая, что оба режима (старый и новый) находятся в области ламинарного течения; б) считая, что оба режима находятся в автомодельной области.

1.33. Жидкость относительной плотности 0,9 поступает самотеком из напорного бака, в котором поддерживается атмосферное давление, в ректификационную колонну (рис. 1.27). Давление в колонке 0,4 кгс/см2 (~40 кПа) по манометру (pизб). На какой высоте х должен находиться уровень жидкости в напорном баке над местом ввода в колонну, чтобы скорость жидкости в трубе была 2 м/с. Напор, теряемый на трение и местные сопротивления, 2,5 м. Применить уравнение Бернулли.


Выдержка из текста работы

1.34. 86% раствор глицерина спускается из напорного бака 1 в аппарат 2 по трубе диаметром 29x2 мм (рис. 1 28). Разность уровней раствора 10 м. Общая длина трубопровода 110 м. Определить расход раствора, если относительная плотность его 1,23, а динамический коэффициент вязкости 97 мПа -с. Местными сопротив­лениями пренебречь. Режим течения принять ламинарным (с последующей проверкой). Уровень раствора в баке считать постоянным.

1.35. 20 т/ч хлорбензола при 45 °С перекачиваются насосом 1 в напорный бак 2 (рис. 1.29). В реакторе над жидкостью поддерживается разрежение 200 мм рт. ст. (26,66 кПа), в напорном баке атмосферное давление. Трубопровод выполнен из стальных труб с незначительной коррозией диаметром 76 х X 4 мм, общей длиной 26,6 м. На трубопроводе установлены 2 крана, диафрагма (d0 = 48 мм) и 5 отводов под углом 90° (R0/d= 3). Хлорбензол перекачивается на высоту Н=15м. Найти мощность, потребляемую насосом, приняв общий к. п. д. насосной установки 0,7.

1.36. Кожухотрубчатый теплообменник (рис. 1.21) состоит из 187 стальных труб с незначительной коррозией (е = 0,2 мм) диаметром 18x2 мм, длиной 1,9 м. Кожух выполнен из трубы 426X12 мм. По межтрубному пространству параллельно осям труб проходит 3000 м3/ч азота (считая при нормальных условиях) под атмосферным давлением при средней температуре -10 °С. Диаметр входного и выходного штуцера 250 мм. Определить гидравлическое сопротивление межтрубного пространства»

1.37. В теплообменнике типа «труба в трубе» (рис. 1.12), состоящем из двух концентрических труб (внутренней диаметром 44,5X3,5 мм и наружной диаметром 89x5 мм), охлаждается от 70 до 30 °С толуол в количестве 1900 кг/ч. Толуол проходит по кольцевому пространству между наружной и внутренней трубой; по внутренней трубе протекает охлаждающая вода, нагревающаяся от 14 до 21 °С. Определить потерю давления на трение на 1 м длины трубы для толуола и для воды, принимая, что стальные трубы имеют незначительную коррозию. Средняя температура стенки внутренней трубы 25 °С.

1.38. Привести формулу (1.39) к критериальному виду.

1.39. Какой должен быть взят геометрический масштаб модели, если в промышленном аппарате рабочая жидкость - нефть, а в модели - вода, кинематический коэффициент вязкости которой в 50 раз меньше, чем у нефти? Какую скорость надо дать воде в модели, если скорость нефти в промышленном аппарате 1 м/с? Моделируются одновременно силы трения и силы тяжести.

1.40. Определить мощность, расходуемую при перекачке насоса 4,6 м3/ч холодильного рассола (25% раствор СаС12) из холодильной установки в конденсатор, расположенный над ректификационной колонной. Высота подъема 16 м, динамический коэффициент вязкости рассола 9,5 мПа-с, плотность 1200 кг/м3, диаметр трубопровода 32x2,5 мм, общая длина 80 м. Стальные трубы имеют незначительную коррозию. На линии установлены 6 отводов под углом 90° (R0/d = 4) и 4 прямоточных вентиля. Общий к. п. д. насоса с электродвигателем 0,5.

1.41. По горизонтальному трубопроводу перекачивается жидкость. Во сколько раз возрастет расход энергии на перекачку, если через трубу будет проходить удвоенное количество жидкости? Коэффициент трения считать постоянным, ?pдоп= 0.


Заключение

1.42. По стальному трубопроводу внутренним диаметром 75 мм требуется перекачивать 25 м3/ч жидкости плотностью 1200 кг/м3, с динамическим коэффициентом вязкости 1,7 мПа-с. Конечная точка трубопровода выше начальной на 24 м. Длина трубопровода 112 м. На нем установлены 2 прямоточных вентиля и 5 прямоугольных отводов с радиусом изгиба 300 мм. Трубы имеют незначительную коррозию. Найти потребляемую мощность, если общий к. п. д. насосной установки 0,6.

1.43. Вода при 10 °С подается из реки насосом в открытый резервуар (рис. 1.30). Верхняя точка на 50 м выше уровня воды в реке. Трубопровод стальной с незначительной коррозией, внутренний диаметр его 80 мм, расчетная длина (собственная длина плюс эквивалентная длина местных сопротивлений) 165 м. Насос подает 575 дм3/мин.

Какова расходуемая насосом мощность, если к. п. д. насосной установки 0,55?

1.44. По прямому воздухопроводу прямоугольного сечения 400x600 мм, сделанному из кровельной стали, надо подавать 14400 кг/ч воздуха при 27 "С и атмосферном давлении. Длина воздухопровода 60 м. Найти требуемую мощность электродвигателя, если его к. п. д. 0,95, а к. п. д. вентилятора 0,4.

1.45. По трубопроводу с внутренним диаметром 100 мм подается диоксид углерода под давлением 2 кгс/см3 (по манометру) при средней температуре 75 °С с массовой скоростью 30 кг/(м2-с). Шероховатость трубы ?= 0,7 мм. Определить гидравлическое сопротивление горизонтального трубопровода при длине его 90 м и при наличии четырех колен под углом 90° и задвижки. Определить также мощность, потребляемую газодувкой для пере­мещения диоксида углерода, если ее к. п. д. составляет 50 %.

1.46. 40%-ный этиловый спирт спускается из бака по трубе диаметром 33,5x2,8 мм. На трубе имеются кран и 2 колена под углом 90°. Общая длина трубопровода 49 м. Определить скорость спирта в трубопроводе (при разности высот 7,2 м). Коэффициент трения принять приближенно равным 0,025. Найдя скорость спирта, проверить значение коэффициента трения. Температура спирта 35 °С.

1.47. По трубопроводу диаметром 26,8x2,5 мм стекает нитробензол с температурой 44 °С. Начальная точка трубопровода выше конечной на 200 мм. Длина горизонтальной части трубопровода 242 м. Учесть только сопротивление трения. Найти массовый расход нитробензола и проверить принятый режим его движения.

1.48. В аппарат, работающий под давлением рабс = 0,2 МПа, надо подавать насосом воду из открытого резервуара по трубопроводу внутренним диаметром 70 мм. Верхняя точка трубопровода выше уровня воды в резервуаре на 5 м. Расчетная длина трубопровода (собственная длина плюс эквивалентная длина местных сопротивлений) 350 м. Коэффициент трения ? = 0,03. Найти зависимость между расходом воды, протекающей по трубопроводу, и потерей давления на преодоление всех сопротивлений трубопровода (найти уравнение характеристики сети).

1.49. Центробежный насос имеет следующую паспортную характеристику:

Расход воды, м3/ч 12 18 24 30

Создаваемый напор; м 38 36 32 26

Сколько воды будет подавать этот на­сос, если поставить его работать на сеть контрольной задачи 1.48? (Найти рабочую точку).

1.50. Вентилятор подает воздух, засасывая его из атмосферы. Подача вентилятора 12 500 м3/ч. Какое массовое количество воздуха подает вентилятор зимой (t = -15 °С) и летом (t = 30 °С)?

1.51. Определить давление, развиваемое вентилятором, который подает воздух из атмосферы при температуре 18 °С в пространство с избыточным давлением 43 мм вод. ст. Потери давления в трубопроводе 275 Па, скорость воздуха в нем 11,5 м/с.

1.52. Какое абсолютное давление (в кгс/см2) должен иметь воздух, подаваемый в монтежю (рис. 1.31) для подъема серной кислоты относительной плотности 1,78 на высоту 21 м? Гидравлическими потерями пренебречь.

1.53. Скорость струи на выходе из диффузора горизонтального водоструйного насоса (см. рис. 2.10) 2,35 м/с. Вода выходит из диффузора под атмосферным давлением. Диаметр выходного отверстия диффузора 62 мм, диаметр отверстия сопла (сечение 1) 30 мм. Пренебрегая потерями, определить теоретическую высоту Н на которую может быть поднята "откачиваемая вода из открытого резервуара.

1.54. Определить гидравлическое сопротивление слоя сухой насадки высотой 3 м, состоящей из керамических колец 15x15x2 мм. Через насадку просасывается воздух при 20 °С и атмосферном давлении со скоростью 0,4 м/с (скорость фиктивная).


Список литературы

Примеры и задачи по курсу процессов и аппаратов химической технологии /Учебное пособие/, К.Ф. Павлов, П.Г. Романков, А.А. Носков, 9-ое изд. перераб. и дополнен. Л. Химия,1987-575с.


Примечания

Все задачи решены (цена за одну задачу)


Тема: «ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 1 Основы гидравлики»
Раздел: Технология
Тип: Кейсы/Задачи
Страниц: 1
Стоимость
текста
работы:
100 руб.
Нужна похожая работа?
Закажите авторскую работу по вашему заданию.
  • Цены ниже рыночных
  • Необходимый уровень антиплагиата
  • Прямое общение с исполнителем вашей работы
  • Бесплатные доработки и консультации
  • Минимальные сроки выполнения
  • Пишем сами, без нейросетей

Мы уже помогли 24535 студентам

Средний балл наших работ

  • 4.89 из 5
Узнайте стоимость
написания вашей работы
Похожие материалы
  • ВКР:

    Формирование общеучебных умений и навыков на основе средств и методов информатики

    120 страниц(ы) 

    ВВЕДЕНИЕ 3
    ГЛАВА 1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ФОРМИРОВАНИЯ ОБЩЕУЧЕБНЫХ УМЕНИЙ ШКОЛЬНИКОВ В ПРОЦЕССЕ ОБУЧЕНИЯ ИНФОРМАТИКЕ 9
    1.1. Общеучебные умения: сущность понятия, этапы формирования 9
    1.2. Расширение перечня общеучебных умений учащихся в условиях информатизации общего среднего образования 27
    Выводы по первой главе 51
    ГЛАВА 2. ФОРМИРОВАНИЕ ОБЩЕУЧЕБНЫХ УМЕНИЙ ИСПОЛЬЗОВАНИЯ ИНФОРМАЦИОННЫХ И КОММУНИКАЦИОННЫХ ТЕХНОЛОГИЙ У МЛАДШИХ ШКОЛЬНИКОВ В ПРОЦЕССЕ ОБУЧЕНИЯ ИНФОРМАТИКЕ 52
    2.1. Анализ процесса формирования общеучебных умений использования информационных и коммуникационных технологий в курсе информатики начальной школы 52
    2.2. Программа формирования общеучебных умений использования информационных и коммуникационных технологий для учащихся начальной школы 71
    Выводы по второй главе 90
    Заключение 91
  • Кейсы/Задачи:

    ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 8 Экстракция

    2 страниц(ы) 

    8.1. Построить треугольную диаграмму равновесия для системы вода - уксусная кислота - этиловый эфир при 25 °С, пользуясь данными табл. 8.4. Сравнить полученную диаграмму с диаграммой X, Y - z, Z. (см. пример 8.8).
    8.2. Определить состав и количество сосуществующих фаз, на которые расслаивается смесь 10 кг воды, 5 кг этилового эфира и 5 кг уксусной кислоты. При удалении какого количества этилового эфира эта смесь перестанет расслаиваться?
    8.3. Уксусная кислота экстрагируется из водного раствора, содержащего ее 15% (масс.) при 25 °С. Масса исходной смеси 1200 кг. Определить состав и количество конечных продуктов после отгонки растворителя, если экстракция производится чистым эфиром в перекрестном токе. Процесс ведется в две ступени при отношении массы растворителя к массе обрабатываемой смеси 1,5.
    8.4. Уксусная кислота экстрагируется в противотоке этиловым эфиром из водного раствора, содержащего 20% (масс.) кислоты. Определить необходимое количество растворителя на 1000 кг/ч исходной смеси и число теоретических ступеней экстрагирования, если экстракт должен содержать 60% (масс.), а рафинат - не более 2% (масс.) кислоты (после отгонки растворителя).
  • Кейсы/Задачи:

    ЗАДАЧИ ПАВЛОВ РОМАНКОВ РАЗДЕЛ 3 Гидромеханические процессы

    1 страниц(ы) 

    3.1. Найти соотношение диаметров частиц свинцового блеска (р = 7800 кг/м3) и кварца (р = 2600 кг/м3), осаждающихся с одинаковой скоростью: а) в воздухе; б) в воде, считая, что осаждение происходит при Rе < 0,2.
    3.2. С какой скоростью будут осаждаться шарообразные частицы кварца (р = 2600 кг/м3) диаметром 10 мкм; а) в воде при 15 °С; б) в воздухе при 15 и 500 °С?
    3.3. Какой должна быть скорость воздуха в вертикальной трубе пневматической сушилки, чтобы обеспечить перемещение кристаллов плотностью 2000 кг/м3 с наибольшим диаметром 3 мм? Температура воздуха 60°С. Скорость воздуха должна быть на 25% больше скорости витания частиц.
    3.4. Рассчитать скорость восходящего потока воздуха в воздушном сепараторе, необходимую для отделения мелких (d < 1 мм) частиц апатита от более крупных. Температура воздуха 20 °С. Плотность апатита 3230 кг/м3.
    3.5. Каким должно быть расстояние между полками пылевой камеры (см. рис. 3.9), чтобы в ней оседали частицы колчеданной пыли диаметром более 15 мкм? Остальные условия такие же, как в примере 3.6.
  • Кейсы/Задачи:

    ЗАДАЧИ ПАВЛОВ РОМАНКОВ РАЗДЕЛ 4 Теплопередача

    1 страниц(ы) 

    4.1. Во сколько раз увеличится термическое сопротивление стенки стального змеевика, свернутого из трубы диаметром 38х2,5 мм, если покрыть ее слоем эмали толщиной 0,5 мм? Считать стенку плоской. Коэффициент теплопроводности эмали 1,05 Вт/(м.К).
    4.2. Паропровод длиной 40 м, диаметром 51x2,5 мм покрыт слоем изоляции толщиной 30 мм; температура наружной поверхности изоляции t=45°С, внутренней tг = 175°С. Определить количество теплоты, теряемое паропроводом в 1 ч. Коэффициент теплопроводности изоляции λ = 0,116 Вт/(м-К).
    4.3. Стальная труба диаметром 60x3 мм изолирована слоем пробки толщиной 30 мм и сверху еще слоем совелита (85 % магнезии + 15% асбеста) толщиной 40мм. Температура стенки трубы -110°С, а наружной поверхности изоляции 10 °С. Вычислить часовую потерю холода с 1 м длины трубы.
    4.4. Как изменится потеря холода в условиях предыдущей задачи, если внутренний слой сделать совелитовым (б = 40 мм), а наружный - пробковым (δ = 30 мм)?
    4.5. Найти температуру внутренней поверхности обмуровки аппарата (рис. 4.19), если температура на наружной поверхности ее 35 °С. Толщина обмуровки 260 мм. Термометр, заделанный на глубину 50 мм от наружной поверхности, показывает температуру 70 °С.
    4.6. Вычислить коэффициент теплопроводности для: а) жидкого хлороформа при t = 20 °С; б) сернистого газа при t = 160 °С и абсолютном давлении 1 кгс/сма (~0,1 МПа); в) 25% водного раствора хлористого кальция при t= 30 °С.
    4.7. Необходимо испарять 1600 кг/ч жидкости, кипящей при t= 137°С и поступающей в испаритель при этой температуре. Удельная теплота испарения жидкости r = 377•108 Дж/кг. Температура греющего пара должна быть не ниже 150 °С. Определить расход греющего пара: а) сухого насыщенного, риаб = 4 кгс/сма (~0,4 МПа); б) перегретого до 250 °С, ризб = 4 кгс/см2 (~0,4 МПа); в) перегретого до 250°С, риаб = 3 кгс/смя (~0,3 МПа). Удельная теплоемкость перегретого пара 2,14-103 Дж/(кг-К).
    Изобразить процессы изменения состояния греющего пара на диаграмме Т - S. Конденсат греющего пара отводится при температуре конденсации.
    4.8. До какой температуры будут нагреты глухим паром 2 т раствора хлористого кальция, если расход греющего пара (ра6с = 2 кгс/сма, т. е. ~0,2 МПа) за 2,5 ч составил 200 кг, а расход теплоты на нагрев аппарата и потери теплоты в окружающую среду составляют в среднем 2030 Вт? Начальная температура раствора 10 °С. Удельная теплоемкость раствора 2,5 х 103 Дж/(кг К).
    4.9. Определить количество передаваемой теплоты в противоточном конденсаторе, в котором конденсируется 850 кг/ч пара сероуглерода под атмосферным давлением. Пар сероуглерода поступает в конденсатор с температурой 90 °С. Жидкий сероуглерод выхолит из конденсатора при температуре на в °С ниже температуры конденсации. Удельная теплоемкость пара сероуглерода 0,67.103 Дж/(кг-К).
    4.10. В кожухотрубчатый конденсатор поступает 120 кг/ч сухого насыщенного пара диоксида углерода под давлением Рабе = 60 кгс/см2 (~6,0 МПа). Жидкий диоксид углерода выходит из конденсатора под тем же давлением при температуре конденсации. Принимая разность температур диоксида углерода и воды на выходе воды из конденсатора 5 К, определить необходимый расход воды, если она поступает в конденсатор с температурой 10 °С.
    4.11. Колонна для ректификации жидкого воздуха покрыта слоем тепловой изоляции из шлаковой ваты толщиной 250 мм. Температура жидкости внутри колонны -190 °С, температура воздуха в помещении 20 °С. Какое количество теплоты может проникать из окружающего воздуха в колонну через 1 ма поверхности, если пренебречь термическими сопротивлениями со стороны жидкости, окружающего воздуха и металлической стенки колонны?
    4.12. Как изменится коэффициент теплопередачи в аппарате, если заменить стальные трубы диаметром 38x2,5 мм на медные такого же размера: а) в паровом калорифере для воздуха, в котором aвозд = 41 Вт/(м8.К), агр. пара = 11600 Вт/(м2-К); б) в выпарном аппарате, в котором араств = 2320 Вт/(ма-К), агр. пара = 11600 Вт/(мг-К)? Загрязнений поверхности не учитывать.
  • Кейсы/Задачи:

    ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 5 Выпаривание

    1 страниц(ы) 

    5.1. Рассчитать удельный расход сухого насыщенного водяного пара при выпаривании воды под атмосферным давлением и под вакуумом (разрежением) 0,8 кгс/см2. Абсолютное давление греющего водяного пара в обоих случаях рабс = 2 кгс/см2. Вода поступает на выпарку: а) при температуре 15 °С; б) подогретой до температуры кипения.
    5.2. Производительность выпарного аппарата по исходному раствору 2650 кг/ч. Концентрация исходного раствора 50 г/л воды. Концентрация выпаренного раствора 295 г на 1 л раствора. Плотность выпаренного раствора 1189 кг/м3. Найти производительность аппарата по выпаренному раствору.
    5.3. Как изменится производительность выпарного аппарата, если на стенках греющих труб отложится слой накипи толщиной 0,5 мм? Коэффициент теплопередачи К для чистых труб равен 1390 Вт/(м2-К). Коэффициент теплопроводности накипи λ = 1,16 Вт/(м.К).
    5.4. Производительность выпарного аппарата, обогреваемого насыщенным водяным паром с избыточным давлением ри;зб = 1,5 кгс/см2, необходимо повысить с 1200 до 1900 кг/ч (по разбавленному раствору). Выпаривание производится под атмосферным давлением, температура кипения раствора в аппарате 105°С, раствор подается на выпарку подогретым до температуры кипения. Определить, какого давления греющий пар надо подавать в аппарат. Тепловые потери не учитывать, коэффициент теплопередачи считать неизменным, так же как и конечную концентрацию раствора.
Другие работы автора
  • Курсовая работа:

    Расчет и подбор печи электрической конвейерной ХПА–40

    35 страниц(ы) 

    Введение 4
    Литературный обзор 5
    Часть 1 Описание группы оборудования 5
    1.1 Классификация технологических машин 14
    Часть 2 Описание конкретной группы овощерезательных машин 18
    2.1 Жарочная печь ПКЖ 18
    2.2 Тупиковая люлечно-подиковая конвейерная печь П119-М 20
    2.3 Тупиковая люлечно-подиковая конвейерная печь П-104 23
    2.4 Туннельная печь Г4 ХПС-40 24
    Часть 3 Описание принципа работы 25
    3.1 Описание принципа действия конвейерной печи ХПА-40 25
    3.2 Правила эксплуатации и техники безопасности 26
    3.3 Расчет конвейерной печи ХПА-40 30
    Заключение 32
    Список литературы 34
    Ведомость технологического проекта 35
  • Курсовая работа:

    Спроектировать и экономически обосновать производство раствора йода спиртового 5 %

    58 страниц(ы) 

    Реферат …
    Перечень сокращений и условных обозначений …
    Введение…
    1 Аналитическая часть
    1.1 Историческая справка о методах получения и использования продукта
    1.2 Выбор и обоснование метода производства. Химизм процесса…
    2. Расчётно-технологическая часть
    2.1 Описание технологической схемы узла алкилирования бензола пропиленом
    в присутствии катализатора трёххлористого алюминия…
    2.2 Техническая характеристика сырья, полуфабрикатов и продуктов…
    2.3 Материальный баланс производства…
    2.4 Выбор и технологический расчёт основного и вспомогательного оборудования…
    2.5 Тепловой расчёт….
    2.6 Механический расчёт оборудования….….
    2.7 Внесенные изменения по сравнению с аналогом и обоснование изменений вводимых в проект.…
    3 Экологичность проекта…
    Заключение…
    Список литературы…
    Спецификация….
  • Кейсы/Задачи:

    ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 8 Экстракция

    2 страниц(ы) 

    8.1. Построить треугольную диаграмму равновесия для системы вода - уксусная кислота - этиловый эфир при 25 °С, пользуясь данными табл. 8.4. Сравнить полученную диаграмму с диаграммой X, Y - z, Z. (см. пример 8.8).
    8.2. Определить состав и количество сосуществующих фаз, на которые расслаивается смесь 10 кг воды, 5 кг этилового эфира и 5 кг уксусной кислоты. При удалении какого количества этилового эфира эта смесь перестанет расслаиваться?
    8.3. Уксусная кислота экстрагируется из водного раствора, содержащего ее 15% (масс.) при 25 °С. Масса исходной смеси 1200 кг. Определить состав и количество конечных продуктов после отгонки растворителя, если экстракция производится чистым эфиром в перекрестном токе. Процесс ведется в две ступени при отношении массы растворителя к массе обрабатываемой смеси 1,5.
    8.4. Уксусная кислота экстрагируется в противотоке этиловым эфиром из водного раствора, содержащего 20% (масс.) кислоты. Определить необходимое количество растворителя на 1000 кг/ч исходной смеси и число теоретических ступеней экстрагирования, если экстракт должен содержать 60% (масс.), а рафинат - не более 2% (масс.) кислоты (после отгонки растворителя).
  • Кейсы/Задачи:

    Павлов Романков раздел 11 Глубокое охлаждение

    2 страниц(ы) 

    11.1. Вычислить холодильный коэффициент и мощность, потребляемую холодильной установкой, работающей по циклу Карно, если ее холодопроизводительность 6400 Вт при температуре испарения -10°С. Температура конденсации 22 °С.
    11.2. Найти минимальную затрату работы (по циклу Карно) и расход воды в конденсаторе при выработке 100 кг/ч льда из воды, имеющей температуру 0 °С. Хладагент испаряется при -5°С, а конденсируется при 25°С. Вода в конденсатор подается при 12 СС, а уходит при 20 СС. Удельная теплота замерзания воды 335 кДж/кг.
    11.3. Определить удельную холодопроизводительность хладагента и холодильный коэффициент цикла для: а) аммиака; б) диоксида углерода и в) дифтордихлорметана СF2Сl2. Температура испарения - 15 0С, температура конденсации 300С. Цикл сухой, переохлаждение жидкости перед дросселированием отсутствует.
    11.4. Вычислить теоретический холодильный коэффициент углекислотной холодильной установки, если температура конденсации 20°С, а температура испарения -40°С. Цикл сухой, переохлаждение жидкости перед дросселированием отсутствует.
    11.5. Сравнить теоретические холодильные коэффициенты аммиачной компрессионной холодильной установки, работающей при температуре испарения -20 °С и температуре конденсации 30 °С: а) для цикла Карно; б) для реального влажного цикла; в) для сухого цикла без переохлаждения жидкого аммиака; г) для сухого цикла с переохлаждением до 25 СС жидкого аммиака после конденсации.
    11.6. По условиям предыдущей задачи сравнить теоретические холодильные коэффициенты для фреоновой холодильной установки, пользуясь диаграммой i - lg р (рис. XXVIII).
    Задача 11.7 В конденсаторе аммиачной холодильной установки 20 м3/ч воды нагревается на 6 К. Теоретическая мощность, затрачиваемая компрессором, 23,5 кВт. Определить холодопроизводительность установки и холодильный коэффициент.
  • Курсовая работа:

    Получение формальдегида окислительным дегидрированием метилового спирта.

    19 страниц(ы) 

    Задание 3
    1. Опишите свойства формальдегида, области его применения 5
    2. Проведите сравнение методов получения формальдегида из различных видов сырья. 7
    3. Опишите физико-химические свойства системы, положенной в основу получения формальдегида из метанола. На основе анализа этих свойств проведите обоснование оптимального варианта технологического режима, типа технологической схемы 10
    4. Приведите чертеж и описание технологической схемы получения формальдегида окислительным дегидрированием метанола. 14
    5. Рассчитайте и составьте материальный баланс процесса получения 16
    Список использованных источников 20
  • Дипломная работа:

    Hеконструкции станции нейтрализации ООО «Новокузнецкий металлургический комбинат».

    120 страниц(ы) 

    Реферат
    Введение
    1 Технологическая часть
    1.1 Обоснование проекта и постановка задачи
    1.2 Описание существующей технологической схемы
    1.3 Выбор и обоснование предлагаемой технологической схемы
    1.3.1 Электрохимический метод очистки сточных вод
    1.3.2 Физико – химический метод очистки сточных вод
    1.3.3 Комбинированный метод очистки сточных вод
    1.3.4 Биологический метод очистки сточных вод
    1.3.5 Химический метод очистки сточных вод
    1.4 Описание предлагаемой (реконструированной) технологической схемы
    1.5 Расчет материального баланса
    1.5.1 Расчет материального баланса стадии нейтрализации сточных вод
    1.5.2 Расчет материального баланса процесса очистки сточных вод в
    отстойнике
    1.5.3 Расчет материального баланса обезвоживания осадка на
    вакуум –фильтре
    1.5.4 Расчет материального баланса стадии очистки сточных вод в
    биомешках
    1.6 Расчет материального баланса с учетом возвратных потоков
    1.6.1 Расчет материального баланса стадии нейтрализации сточных вод
    1.6.2 Расчет материального баланса процесса очистки сточных вод в
    отстойнике
    1.6.3 Расчет материального баланса обезвоживания осадка на
    вакуум –фильтре
    1.6.4 Расчет материального баланса стадии очистки сточных вод в
    биомешках
    1.7 Расчет основного и выбор вспомогательного оборудования
    1.7.1 Расчет усреднителя
    1.7.2 Расчет вертикального отстойника
    1.7.3 Расчет вакуум-фильтра
    1.7.4 Расчет биомешков
    Заключение по разделу
    2 Технико-экономическая часть
    Введение
    2.1 Расчет себестоимости очистки до реконструкции
    2.1.1 Расчет мощности планируемого оборудования
    2.1.2 Расчет коэффициента использования мощности установки
    2.1.3 Расчет затрат по статье «Сырье и материалы»
    2.1.4 Расчет затрат по статье «Топливо и электроэнергия на
    технологические цели»
    2.1.5 Расчет фонда заработной платы основных производственных
    рабочих
    2.1.6 Списочная численность рабочих
    2.1.7 Баланс времени одного рабочего
    2.1.8 Расчет фонда заработной платы
    2.1.9 Расчет затрат по статье «Начисление на фонд заработной платы»
    2.1.10 Расчет затрат по статье «Расходы на содержание и эксплуатацию
    оборудования»
    2.1.11 Расчет затрат по статье « Ремонтный фонд»
    2.1.12 Расчет по статье « Содержание зданий и сооружений»
    2.1.13 Расчет затрат по статье «Ремонтный фонд», включающие
    резервирование затрат на текущие и капитальные ремонты
    2.1.14 Расчет фонда заработной платы цехового управленческого персонала
    2.1.15 Начисления на фонд заработной платы ИТР
    2.1.16 Расчет затрат по статье «Расходы по охране труда»
    2.1.17 Расчет затрат по статье «Прочие цеховые расходы»
    2.1.18 Расчет затрат по статье «Платежи за пользование канализационными
    сетями»
    2.1.19 Калькуляция себестоимости очистки
    2.2 Расчет себестоимости очистки после реконструкции
    2.2.1 Расчет мощности планируемого оборудования
    2.2.2 Расчет коэффициента использования мощности установки
    2.2.3 Расчет затрат по статье «Сырье и материалы»
    2.2.4 Расчет затрат по статье «Топливо и электроэнергия на технологические
    цели
    2.2.5 Расчет фонда заработной платы основных производственных рабочих
    2.2.6 Расчет затрат по статье «Начисление на фонд заработной платы»
    2.2.7 Расчет затрат по статье «Расходы на содержание и эксплуатацию
    оборудования»
    2.2.8 Расчет затрат по статье «Ремонтный фонд»
    2.2.9 Расчет затрат по статье «Содержание зданий и сооружений»
    2.2.10 Расчет затрат по статье «Ремонтный фонд», включающие
    резервирование затрат на текущие и капитальные ремонты
    2.2.11 Расчет фонда заработной платы цехового управленческого
    персонала
    2.2.12 Начисления на фонд заработной платы ИТР
    2.2.13 Расчет затрат по статье «Расходы по охране труда»
    2.2.14 Расчет затрат по статье «Прочие цеховые расходы»
    2.2.15 Расчет затрат по статье «Платежи за загрязнение окружающей
    природной среды»
    2.2.16 Калькуляция себестоимости очистки
    2.3 Расчет показателей эффективности планируемого мероприятия
    2.3.1 Годовой экономический эффект
    2.3.2 Эффективность предлагаемых мероприятий
    2.3.3 Срок окупаемости капитальных дополнительных вложений
    Заключение
    3 Экологическая оценка проекта
    Введение
    3.1 Описание существующего технологического процесса
    3.2 Описание реконструированной технологической схемы
    3.3 Анализ факторов воздействия на окружающую среду очистных
    сооружений
    Вывод по разделу
    4 Безопасность жизнедеятельности
    4.1 Безопасность рабочего процесса
    4.2 Санитарно – бытовые условия
    4.3Анализ производственного травматизма и заболеваемости
    4.4 Организация охраны труда
    4.5 Мероприятия по охране труда
    4.6 Пожарная безопасность
    5Контроль и автоматизация
    Аннотация
    Введение
    5.1 Описание функциональной схемы автоматизации технологического процесса
    5.2 Структурная схема регулирования осветленности раствора в верти-кальном отстойнике и ее описание
    5.3 Описание принципа действия приборов, входящих в систему регули-рования параметра объекта
    5.3.1 Автоматический потенциометр КСУ-2
    5.3.2 Блок регулирующий релейный Р-21
    5.3.3 Исполнительный механизм МЭОБ-21
    5.3.4 Усилитель У-21
    5.3.5 Задающее устройство ЗУ-05
    Вывод по разделу
    Заключение
    Список использованных источников
    Спецификация
  • Дипломная работа:

    Спроектировать сепаратор, действующий на установке комплексной подготовки газа Северо-Комсомольского месторождения, на стадии низкотемпературной сепарации, производительностью 700 млн. т/год.

    100 страниц(ы) 

    ВВЕДЕНИЕ
    1 Литературный обзор
    1.1 Установки низкотемпературной сепарации
    1.1.1 Основные факторы, влияющие на процесс НТС
    1.2. Сепарационное оборудование
    2 ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ
    2.1 Выбор и обоснование технологической схемы производства
    2.2 Характеристика сырья
    2.3 Установка низкотемпературной сепарации с блоком входного сепаратора
    2.4 Материальный баланс производства
    2.5 Расчет основного оборудования
    2.5.1 Выбор числа ступеней сепарации и давления в сепараторах
    2.5.2 Расчет сепаратора
    2.6 Расчет вспомогательного оборудования
    3. МЕХАНИЧЕСКАЯ ЧАСТЬ
    3.1 Исходные данные для конструктивного расчета аппарата
    3.2 Расчеты на прочность основных узлов и деталей аппаратов
    3.3 Эксплуатация оборудования
    3.4 Ремонт и монтаж оборудования
    3.4.1 Расчет такелажной оснастки
    3.5 Специальная часть. Расчет системы регулирования
  • Курсовая работа:

    Проектирование картофелеочистительной машины МОК-125

    39 страниц(ы) 

    Введение 3
    1 Анализ современных машин и аппаратов аналогического назначения и технико-экономическое обоснование темы проекта 4
    1.1 Назначение картофелеочистительного оборудования, классификация 4
    1.2 Современные конструкции картофелеочистительных машин 8
    1.3 Технико-экономическое обоснование темы проекта 15
    1.4 Значение проекта 15
    2 Описание модернизированной конструкции. 17
    2.1 Назначение и область применения 17
    2.2 Описание конструкции и принцип действия 17
    2.3 Техническая характеристика. 20
    3 Расчеты, подтверждающие работоспособность конструкции 22
    3.1 Технологические расчеты 22
    3.2 Кинематические расчеты 23
    3.3 Расчет потребной мощности 25
    3.4 Расчеты на прочность. 26
    4 Мероприятия по охране труда и техники безопасности при обслуживании оборудования 35
    Заключение 38
    Список используемой литературы 39
  • Дипломная работа:

    Разработка станции технического обслуживая на 11 постов в городе Перми

    140 страниц(ы) 

    ВВЕДЕНИЕ 5
    1 АНАЛИЗ ХОЗЯЙСТВЕННОЙ ДЕЯТЕЛЬНОСТИ СТО 7
    1.1 Организация технологических процессов ТО легковых автомобиле 16
    1.2 Выбор метода организации производства СТО 19
    1.3 Организация производственного процесса СТО 19
    1.4 Организация работ ТО и ТР легковых автомобилей 21
    2. ТЕХНОЛОГИЧЕСКИЙ РАСЧЕТ СТО 21
    2.1 Исходные данные 21
    2.2 Расчет годового объема работ СТО 31
    2.2.2 Расчёт числа автомобилей, обслуживаемых СТО 36
    2.2.3 Расчет годового объема уборочно-моечных работ 37
    2.2.4 Расчет годового объема работ по приемке и выдаче автомобилей 37
    2.2.5 Расчёт годового объема вспомогательных работ 38
    2.3 Распределение годовых объемов работ по зонам и цехам 39
    2.4 Расчет числа рабочих СТО 41
    2.5 Расчет числа постов и автомобиле-мест ожидания 46
    2.6 Расчет площадей помещений 49
    2.7 Расчёт площади СТО 56
    3 КОНСТРУКТОРСКАЯ ЧАСТЬ 58
    3.1 Анализ конструкций стендов для диагностики подвески лекговых автомобилей.58
    3.2 Описание стенда.64
    3.2.1 Методы диагностирования амортизаторов и подвески.70
    3.3 Расчет экцентрикового зажима.76
    3.4 Подбор электродвигателя.78
    3.6 Расчеты на прочность.81
    3.7 Редуктор шевронный.83
    3.8 Расчет на прочность валов.89
    3.9 Выбор смазки редуктора.97
    3.10 Проверка прочности шпоночного соединения.98
    3.11 Проверка долговечности подшипника.100
    3.12 Подбор муфты.101
    3.13 Монтаж стенда.101
    3.14 Техническое обслуживание стенда.102
    4. БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ. 104
    4.1 Безопасность жизнедеятельности.104
    4.1.1 Анализ условий и охрана труда на предприятии.104
    4.1.2 Требования безопасности при техническом обслуживании и ремонте автомобилей.108
    4.1.3 Мероприятия по выполнению требований безопасности.115
    4.2 Экологическая безопасность. 116
    4.2.1 Негативное воздействие предприятия на окружающую среду и его снижение.117
    4.2.2 Выбросы вредных и загрязняющих веществ в атмосферу.118
    4.2.3 Обращение с отходами.120
    4.2.4 Отчистка сточных вод от загрязнения.126
    5. ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ПРЕДПРИЯТИЯ 128
    5.1 Этапы развития производства 128
    5.2 Выбор метода экономической оценки инвестиций. 128
    5.3 Расчет срока окупаемости 130
    ЗАКЛЮЧЕНИЕ 139
    СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 140
  • Дипломная работа:

    Рассчитать и спроектировать установку обратного осмоса с доупариванием хлорида кальция в трехкорпусной выпарной установки

    55 страниц(ы) 

    ВВЕДЕНИЕ 3
    1 УСТАНОВКА ОБРАТНОГО ОСМОСА 5
    ЗАДАНИЕ 5
    2. РАСЧЕТ АППАРАТА ОБРАТНОГО ОСМОСА 5
    2.1 Технологический расчет 5
    2.1.1. Степень концентрирования на ступени обратного осмоса 7
    2.1.2. Выбор рабочей температуры и перепада давления через
    мембрану 7
    2.1.3 Выбор мембраны 8
    2.1.4 Приближенный расчет поверхности мембраны 12
    2.1.5 Выбор аппарата и определение его основных характеристик 13
    2.1.6 Секционирование аппаратов в установке 16
    2.1.7 Расчет наблюдаемой селективности мембран 19
    2.1.8 Уточненный расчет поверхности мембран 21
    3.2. Расчет гидравлического сопротивления 23
    3. РАСЧЕТ ТРЕХКОРПУСНОЙ ВЫПАРНОЙ УСТАНОВКИ 25
    3.1 Технологический расчет 25
    3.1.1 Определение поверхности теплопередачи выпарного аппарата 25
    3.1.2 Концентрация упариваемого раствора 25
    3.1.3 Температуры кипения растворов 26
    3.1.4 Полезная разность температур 31
    3.1.5 Определение тепловых нагрузок 31
    3.1.6 Выбор конструкции выпарного аппарата 34
    3.1.7 Расчет коэффициентов теплопередачи 36
    3.2 Гидравлический расчет 42
    3.3 Механический расчет 43
    3.3.1 Расчет проточной части трубного пространства 43
    3.3.2 Определение диаметра штуцеров 44
    3.3.3 Расчет обечайки аппарата, работающей под внутренним
    давлением 45
    3.3.4 Расчёт трубной решётки 49
    3.3.5 Расчёт опор 50
    ЗАКЛЮЧЕНИЕ 51
    СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 52