СтудСфера.Ру - помогаем студентам в учёбе

У нас можно недорого заказать курсовую, контрольную, реферат или диплом

Исследование операций. Готовые лабораторные работы (5 вариантов готовых) - Лабораторная работа №14712

«Исследование операций. Готовые лабораторные работы (5 вариантов готовых)» - Лабораторная работа

  • 100 страниц(ы)

Содержание

Введение

Заключение

Список литературы

Примечания

фото автора

Автор: navip

Содержание

1. Геометрический способ решения задач линейного программирования

Решить задачи своего варианта графически (преподаватель назначает номера задач (не менее четырех) для вашего варианта). Записать для решенных задач двойственные задачи и определить их решения, используя теорему о дополняющей нежесткости. Проверить и записать решения тех и других задач на MAPLE.

11) f(x )=x1x2max,

x1,x20,

1x1+x22,

2x12x23,

2x1+3x22.

Построим множество, ограниченное прямыми 1=x1+x2, x1+x2=2,

2=x12x2, x12x2=3, 2x1+3x2=2.

Данное множество не пересекает первую координатную четверть ни в одной точке, значит данная задача не имеет решения.

f(x )=x1x2max,

x1,x20,

-x1-x2-1

x1+x22,

x12x23,

-x1+2x2-2

2x1+3x22.

Формулировка двойственной задачи:

G(y)=-y1 +2y2+3 y3-2 y4+2 y5 min,

y1,y2, y3, y4, y5 0,

-y1 +y2+ y3- y4+2 y5 1,

-y1 +y2-2 y3+2 y4+3 y5 -1.

По теореме о дополняющей нежесткости получаем, что двойственная задача не имеет решения, т.к. если бы существовало решение двойственной задачи, то по нему можно было бы восстановить, исходя из теоремы, решение прямой задачи, а его нет.

> with(simplex);

> maximize(x1-x2,{x1+x2>=1,x1+x2<=2,x1-2*x2>=2,x1-2*x2<=3,2*x1+3*x2<=2},NONNEGATIVE);

7) f=x1-x2max,

x1,x20,

x1+x21,

x1-2x22,

2x1+3x22,

3x1+2x23,

x1+x21/2.

> inequal({y1>=0,y2>=0,y1+y2<=1,y1-2*y2<=1,2*y1+3*y2<=2,3*y1+2*y2<=3,y1+y2>=1/2},y1=-0.5.2,y2=0.1,optionsfeasible=(color=red),optionsopen=(color=blue,thickness=2),optionsclosed=(color=black,thickness=2),optionsexcluded=(color=white));

> with(simplex);maximize(x1-x2,{x1>=0,x2>=0,x1+x2<=1,x1-2*x2<=1,2*x1+3*x2<=2,3*x1+2*x2<=3,x1+x2>=1/2});

f=x1-x2max,

x1,x20,

x1+x21,

x1-2x21,

2x1+3x22,

3x1+2x23,

-x1-x2-1/2.

Формулировка двойственной задачи:

G(y)=y1 +y2+2 y3+3 y4-1/2 y5 min,

y1,y2, y3, y4, y5 0,

y1 +y2+2y3+3y4- y5 1,

y1 -2y2+3y3+2y4-y5 -1.

По теореме о дополняющей нежесткости получаем:

1(y1 +y2+2y3+3y4- y5-1)=0,

0 (y1 -2y2+3y3+2y4-y5 +1)=0,

y1(1-1)=0,

y2(1-1)=0,

y3(2-2)=0,

y4(3-3)=0,

y5(-1+1/2)=0.

Решение системы: бесконечное множество оптимальных планов;y5=0.

> minimize(y1+2*y2+3*y3+y4-1/2*y5, {y1>=0,y2>=0,y3>=0,y4>=0,y5>=0,-1 <= -2*y1+3*y2+2*y3+y4-y5, 1 <= y1+2*y2+3*y3+y4-y5});

т. е. Gmin(0,0,1/3,0,0)=1.

19) f=12x1-4x2max,

x1,x20,

-3x1-x2-4,

x1+5x21,

-2x1-2,

-x1+x20,

-x1-x2-1.

Построим множество

x1,x20, -3x1-x2-4,

x1+5x21,

-2x1-2,

-x1+x20,

-x1-x2-1.

Данная задача не имеет решения.

> maximize(12*x1-4*x2,{x1>=0,x2>=0,3*x1+x2>=4,-x1-5*x2>=-1,2*x1>=2,x1-x2>=0,x1+x2>=1});

f=12x1-4x2max,

x1,x20,

-3x1-x2-4,

x1+5x21,

-2x1-2,

-x1+x20,

-x1-x2-1.

Формулировка двойственной задачи:

G(y)=-4y1 +y2-2y3-y5min,

y1,y2, y3, y4 0,

-3y1 +y2- 2y3- y4 –y512,

-y1 +5y2+y4 –y5-4.

По теореме о дополняющей нежесткости получаем, что двойственная задача не имеет решения, т.к. если бы существовало решение двойственной задачи, то по нему можно было бы восстановить, исходя из теоремы, решение прямой задачи, а его нет.

31) f=2x14x2min,

x1,x20,

2x1-x2-1,

x1+2x21,

x1-x2-2,

5x1-3x2 15

2x1+3x26.

Построим множество

Вектор градиента направлен как (5\20,-11\20), значит, точка минимума функции будет располагаться на пересечении прямых 3x1+x2=8 и x1+x2=2. Т.е. x1=3\2, x2=7\2. fmin(3\2,7\2)=-31.

> minimize(5*x1-11*x2 ,{-2*x1+x2<=1,-x1+x2<=2,3*x1+x2<=8,-2*x1+3*x2>=-9,4*x1+3*x2>=0},NONNEGATIVE);

f=5x111x2min,

x1,x20,

2x1-x2-1,

x1-x2-2,

-3x1-x2-8,

2x1+3x29,

4x1+3x20.

Формулировка двойственной задачи:

G(y)=-y1 -2y2-8 y3 -9 y4 max,

y1,y2, y3, y4 , y50,

2y1 +y2- 3y3- 2y4 +4y5 5,

-y1 -y2- y3 +3y4 +3 y5-11.

По теореме о дополняющей нежесткости получаем:

3\2(2y1 +y2- 3y3- 2y4 +4y5 -5)=0,

7\2(-y1 -y2- y3 +3y4 +3 y5+11)=0,

y1 (3-7\2+1)=0,

y2 (3\2-7\2+2)=0,

y3 (-9\2-7\2+8)=0,

y4 (3+21\2+9)=0,

y5 (6+21\2)=0.

Получаем:

y1 =0, y4=0,y5 =0

y2- 3y3-5=0,

-y2- y3 +11=0, т.е:

y1 =0, y2 =19\2, y3 =3\2, y4=0,y5 =0.

> maximize(-y1-2*y2-8*y3-9*y4,{2*y1+y2-3*y3-2*y4+4*y5<=5,-y1-y2-y3+3*y4+3*y5<=-11},NONNEGATIVE);

Введение

1. Геометрический способ решения задач линейного программирования

Решить задачи своего варианта графически (преподаватель назначает номера задач (не менее четырех) для вашего варианта). Записать для решенных задач двойственные задачи и определить их решения, используя теорему о дополняющей нежесткости. Проверить и записать решения тех и других задач на MAPLE.

11) f(x )=x1x2max,

x1,x20,

1x1+x22,

2x12x23,

2x1+3x22.

Построим множество, ограниченное прямыми 1=x1+x2, x1+x2=2,

2=x12x2, x12x2=3, 2x1+3x2=2.

Данное множество не пересекает первую координатную четверть ни в одной точке, значит данная задача не имеет решения.

f(x )=x1x2max,

x1,x20,

-x1-x2-1

x1+x22,

x12x23,

-x1+2x2-2

2x1+3x22.

Формулировка двойственной задачи:

G(y)=-y1 +2y2+3 y3-2 y4+2 y5 min,

y1,y2, y3, y4, y5 0,

-y1 +y2+ y3- y4+2 y5 1,

-y1 +y2-2 y3+2 y4+3 y5 -1.

По теореме о дополняющей нежесткости получаем, что двойственная задача не имеет решения, т.к. если бы существовало решение двойственной задачи, то по нему можно было бы восстановить, исходя из теоремы, решение прямой задачи, а его нет.

> with(simplex);

> maximize(x1-x2,{x1+x2>=1,x1+x2<=2,x1-2*x2>=2,x1-2*x2<=3,2*x1+3*x2<=2},NONNEGATIVE);

7) f=x1-x2max,

x1,x20,

x1+x21,

x1-2x22,

2x1+3x22,

3x1+2x23,

x1+x21/2.

> inequal({y1>=0,y2>=0,y1+y2<=1,y1-2*y2<=1,2*y1+3*y2<=2,3*y1+2*y2<=3,y1+y2>=1/2},y1=-0.5.2,y2=0.1,optionsfeasible=(color=red),optionsopen=(color=blue,thickness=2),optionsclosed=(color=black,thickness=2),optionsexcluded=(color=white));

> with(simplex);maximize(x1-x2,{x1>=0,x2>=0,x1+x2<=1,x1-2*x2<=1,2*x1+3*x2<=2,3*x1+2*x2<=3,x1+x2>=1/2});

f=x1-x2max,

x1,x20,

x1+x21,

x1-2x21,

2x1+3x22,

3x1+2x23,

-x1-x2-1/2.

Формулировка двойственной задачи:

G(y)=y1 +y2+2 y3+3 y4-1/2 y5 min,

y1,y2, y3, y4, y5 0,

y1 +y2+2y3+3y4- y5 1,

y1 -2y2+3y3+2y4-y5 -1.

По теореме о дополняющей нежесткости получаем:

1(y1 +y2+2y3+3y4- y5-1)=0,

0 (y1 -2y2+3y3+2y4-y5 +1)=0,

y1(1-1)=0,

y2(1-1)=0,

y3(2-2)=0,

y4(3-3)=0,

y5(-1+1/2)=0.

Решение системы: бесконечное множество оптимальных планов;y5=0.

> minimize(y1+2*y2+3*y3+y4-1/2*y5, {y1>=0,y2>=0,y3>=0,y4>=0,y5>=0,-1 <= -2*y1+3*y2+2*y3+y4-y5, 1 <= y1+2*y2+3*y3+y4-y5});

т. е. Gmin(0,0,1/3,0,0)=1.

19) f=12x1-4x2max,

x1,x20,

-3x1-x2-4,

x1+5x21,

-2x1-2,

-x1+x20,

-x1-x2-1.

Построим множество

x1,x20, -3x1-x2-4,

x1+5x21,

-2x1-2,

-x1+x20,

-x1-x2-1.

Данная задача не имеет решения.

> maximize(12*x1-4*x2,{x1>=0,x2>=0,3*x1+x2>=4,-x1-5*x2>=-1,2*x1>=2,x1-x2>=0,x1+x2>=1});

f=12x1-4x2max,

x1,x20,

-3x1-x2-4,

x1+5x21,

-2x1-2,

-x1+x20,

-x1-x2-1.

Формулировка двойственной задачи:

G(y)=-4y1 +y2-2y3-y5min,

y1,y2, y3, y4 0,

-3y1 +y2- 2y3- y4 –y512,

-y1 +5y2+y4 –y5-4.

По теореме о дополняющей нежесткости получаем, что двойственная задача не имеет решения, т.к. если бы существовало решение двойственной задачи, то по нему можно было бы восстановить, исходя из теоремы, решение прямой задачи, а его нет.

31) f=2x14x2min,

x1,x20,

2x1-x2-1,

x1+2x21,

x1-x2-2,

5x1-3x2 15

2x1+3x26.

Построим множество

Вектор градиента направлен как (5\20,-11\20), значит, точка минимума функции будет располагаться на пересечении прямых 3x1+x2=8 и x1+x2=2. Т.е. x1=3\2, x2=7\2. fmin(3\2,7\2)=-31.

> minimize(5*x1-11*x2 ,{-2*x1+x2<=1,-x1+x2<=2,3*x1+x2<=8,-2*x1+3*x2>=-9,4*x1+3*x2>=0},NONNEGATIVE);

f=5x111x2min,

x1,x20,

2x1-x2-1,

x1-x2-2,

-3x1-x2-8,

2x1+3x29,

4x1+3x20.

Формулировка двойственной задачи:

G(y)=-y1 -2y2-8 y3 -9 y4 max,

y1,y2, y3, y4 , y50,

2y1 +y2- 3y3- 2y4 +4y5 5,

-y1 -y2- y3 +3y4 +3 y5-11.

По теореме о дополняющей нежесткости получаем:

3\2(2y1 +y2- 3y3- 2y4 +4y5 -5)=0,

7\2(-y1 -y2- y3 +3y4 +3 y5+11)=0,

y1 (3-7\2+1)=0,

y2 (3\2-7\2+2)=0,

y3 (-9\2-7\2+8)=0,

y4 (3+21\2+9)=0,

y5 (6+21\2)=0.

Получаем:

y1 =0, y4=0,y5 =0

y2- 3y3-5=0,

-y2- y3 +11=0, т.е:

y1 =0, y2 =19\2, y3 =3\2, y4=0,y5 =0.

> maximize(-y1-2*y2-8*y3-9*y4,{2*y1+y2-3*y3-2*y4+4*y5<=5,-y1-y2-y3+3*y4+3*y5<=-11},NONNEGATIVE);

Заключение

ВАРИАНТ 2

2. Геометрический способ решения задач линейного программирования

Решить задачи своего варианта графически. Записать для решенных задач двойственные задачи и определить их решения, используя теорему о дополняющей нежесткости. Проверить и записать решения тех и других задач на MAPLE.

1) f=x1-x2max,

x1,x20,

x1+x21,

x1-2x22,

2x1+3x22,

3x1+2x23,

x1+x21/2.

Построим множество, ограниченное прямыми ½=x1+x2, x1+x2=1, x12x2=1, 2x1+3x2=2. 3x1+2x2=3. (используем МAРLE)

> inequal({y1>=0,y2>=0,y1+y2<=1,y1-2*y2<=1,2*y1+3*y2<=2,3*y1+2*y2<=3,y1+y2>=1/2},y1=-0.5.2,y2=0.1,optionsfeasible=(color=red),optionsopen=(color=blue,thickness=2),optionsclosed=(color=black,thickness=2),optionsexcluded=(color=white));

> with(simplex);maximize(x1-x2,{x1>=0,x2>=0,x1+x2<=1,x1-2*x2<=1,2*x1+3*x2<=2,3*x1+2*x2<=3,x1+x2>=1/2});

f=x1-x2max,

x1,x20,

x1+x21,

x1-2x21,

2x1+3x22,

3x1+2x23,

-x1-x2-1/2.

Формулировка двойственной задачи:

G(y)=y1 +y2+2 y3+3 y4-1/2 y5 min,

y1,y2, y3, y4, y5 0,

y1 +y2+2y3+3y4- y5 1,

y1 -2y2+3y3+2y4-y5 -1.

По теореме о дополняющей нежесткости получаем:

1(y1 +y2+2y3+3y4- y5-1)=0,

0 (y1 -2y2+3y3+2y4-y5 +1)=0,

y1(1-1)=0,

y2(1-1)=0,

y3(2-2)=0,

y4(3-3)=0,

y5(-1+1/2)=0.

Решение системы: бесконечное множество оптимальных планов;y5=0.

> minimize(y1+2*y2+3*y3+y4-1/2*y5, {y1>=0,y2>=0,y3>=0,y4>=0,y5>=0,-1 <= -2*y1+3*y2+2*y3+y4-y5, 1 <= y1+2*y2+3*y3+y4-y5});

т. е. Gmin(0,0,1/3,0,0)=1.

2) f=x1-x2min,

x1,x20,

x1+x21,

x1-2x22,

2x1+3x22,

3x1+2x23,

x1+x21/2.

Построим множество, ограниченное прямыми ½=x1+x2, x1+x2=1, x12x2=1, 2x1+3x2=2. 3x1+2x2=3. (используем МAРLE)

Формулировка двойственной задачи:

G(y)=y1 +y2+2 y3+3 y4-1/2 y5 max,

y1,y2, y3, y4, y5 0,

y1 +y2+2y3+3y4- y5 1,

y1 -2y2+3y3+2y4-y5 -1.

По теореме о дополняющей нежесткости получаем:

1(y1 +y2+2y3+3y4- y5-1)=0,

0 (y1 -2y2+3y3+2y4-y5 +1)=0,

y1(1-1)=0,

y2(1-1)=0,

y3(2-2)=0,

y4(3-3)=0,

y5(-1+1/2)=0.

Решение системы: бесконечное множество оптимальных планов;y5=0.

> maximize(y1+2*y2+3*y3+y4-1/2*y5, {y1>=0,y2>=0,y3>=0,y4>=0,y5>=0,-1 <= -2*y1+3*y2+2*y3+y4-y5, 1 <= y1+2*y2+3*y3+y4-y5});

3) f=x1+x2min,

0x11,

0x21,

0x1+ x23,

-1x1-x20,

Построим множество, ограниченное прямыми:

with(plots);

> inequal( { x1>=0,x1<=1,x2>=0,x2<=1,x1+x2>=0,x1+x2<=3,x1-x2>=-1,x1-x2<=0}, x1=-1.3, x2=-0.5.4 );

> with(simplex);minimize(x1+x2,{x1>=0,x1<=1,x2>=0,x2<=1,x1+x2>=0,

x1+x2<=3,x1-x2>=-1,x1-x2<=0});

{x1 = 0, x2 = 0}

Формулировка двойственной задачи:

G(y)=-y1 -2y2-8 y3 -9 y4 max,

y1,y2, y3, y4 , y50,

2y1 +y2- 3y3- 2y4 +4y5 2,

-y1 -y2- y3 +3y4 +3 y5-5.

По теореме о дополняющей нежесткости получаем:

3\2(2y1 +y2- 3y3- 2y4 +4y5 -5)=0,

7\2(-y1 -y2- y3 +3y4 +3 y5+11)=0,

y1 (3-7\2+1)=0,

y2 (3\2-7\2+2)=0,

y3 (-9\2-7\2+8)=0,

y4 (3+21\2+9)=0,

y5 (6+21\2)=0.

Получаем:

y1 =0, y4=0,y5 =0

y2- 3y3-5=0,

-y2- y3 +11=0, т.е:

y1 =0, y2 =19\2, y3 =3\2, y4=0,y5 =0.

> maximize(-y1-2*y2-8*y3-9*y4,{2*y1+y2-3*y3-2*y4+4*y5<=5,-y1-y2-y3+3*y4+3*y5<=-11},NONNEGATIVE);

4) f=x1+x2max,

0x11,

0x21,

0x1+ x23,

-1x1-x20,

Построим множество, ограниченное прямыми:

with(plots);

> inequal( { x1>=0,x1<=1,x2>=0,x2<=1,x1+x2>=0,x1+x2<=3,x1-x2>=-1,x1-x2<=0}, x1=-1.1, x2=-0.4 );

> with(simplex);maximize(x1+x2,{x1>=0,x1<=1,x2>=0,x2<=1,

x1+x2>=0,x1+x2<=3,x1-x2>=-1,x1-x2<=0});

{x1 = 1, x2 = 1}

Формулировка двойственной задачи:

G(y)=-y1 -2y2-8 y3 -9 y4 min,

y1,y2, y3, y4 , y50,

2y1 +y2- 3y3- 2y4 +4y5 5,

-y1 -y2- y3 +3y4 +3 y5-11.

По теореме о дополняющей нежесткости получаем:

3\2(2y1 +y2- 3y3- 2y4 +4y5 -5)=0,

7\2(-y1 -y2- y3 +3y4 +3 y5+11)=0,

y1 (3-7\2+1)=0,

y2 (3\2-7\2+2)=0,

y3 (-9\2-7\2+8)=0,

y4 (3+21\2+9)=0,

y5 (6+21\2)=0.

Получаем:

y1 =0, y4=0,y5 =0

y2- 3y3-5=0,

-y2- y3 +11=0, т.е:

y1 =0, y2 =19\2, y3 =3\2, y4=0,y5 =0.

> maximize(-y1-2*y2-8*y3-9*y4,{2*y1+y2-3*y3-2*y4+4*y5<=5,-y1-y2-y3+3*y4+3*y5<=-11},NONNEGATIVE);

3. Симплекс – метод

Использовать искусственный базис. Составить решение двойственной задачи по решению прямой задачи. Заметим, что решением задачи является пара (x, f(x)), если (y, g(y)) – решение двойственной задачи, то компоненты вектора y – произвольные числа, когда прямая задача записана в канонической форме. Проверить и записать решения тех и других задач на MAPLE.

1. f=-x1-11x2-x3-2x4+x5 min,

2x1+6x2+x3+x4+x5=13,

2x1+5x2+x4=11,

x1-x2+x5=1.

Решим задачу используя искусственный базис Составим вспомогательную задачу

G=U1+U2+U3min,

U1+2x1+6x2+x3+x4+x5=13,

U2+2x1+5x2+x4=11,

U3+ x1-x2+x5=1.

Из каждого равенства ограничений выражаем U1 U2 U3 через свободные переменные x1 x2 x3 x4 x5 и подставляем эти значения для целевой функции G Получим

G=25(5x1+ 10x2+x3 +2x4+2x5)

При такой записи вспомогательной задачи мы уже можем составить первую симплекстаблицу

Б п x1 x2 x3 x4 x5 Свчл

2 6 1 1 1 13

2 5 0 1 0 11

1 -1 0 0 1 1

G 5

10

1

2

2

25

Выбираем разрешающий столбец 1:

Для созания таблиц используем программу

program D;

const n=6;m=4;

type massiv=Array[1.m,1.n] of real;

type Nomer=set of 1. 11;

var i,j,k,t:integer;

a,L:massiv; h:real;

ch:char; var Isprasre:Nomer;

procedure wwod;

var k,t:integer;

begin

writeln(' Enter');

for k:=1 to m do for t:=1 to n do readln(a[k,t]); end;

procedure writ;

var k,t:integer;

begin

for k:=1 to m do begin

for t:=1 to n do write(a[k,t]:3:2,' ');

writeln; end;

end;

function rasre(j:integer):integer;

var k,t:integer; g:real;

begin

k:=1;

while (a[k,j]<=0) do k:=k+1;

rasre:=k; g:=a[k,n]/a[k,j];

if kfor t:=k+1 to m do if (not(t in Isprasre)) and (a[t,j]>0)

and(a[t,n]/a[t,j]begin g:=a[t,n]/a[t,j]; rasre:=t end; end;

procedure postab;

var k,t:integer;

begin for k:=1 to n do L[i,k]:=a[i,k]/h;

for t:=1 to m do if t<>i then

for k:=1 to n do L[t,k]:=a[t,k]-a[t,j]*L[i,k]; for k:=1 to n do

for t:=1 to m do a[t,k]:=L[t,k] end;

begin

Isprasre:=[];

wwod;

repeat

write ('vvedite nomer stolbsa');

readln (j);

i:=rasre(j); h:=a[i,j]; postab; writ;

writeln('y/n');read(ch); until ch<>'y'

end.

Выбираем разрешающий столбец2:

Выбираем разрешающий столбец 3 4:

Таким образом задача решена поскольку G приняла оптимальное значение 0 Решив вспомогательную задачу мы тем самым нашли базис для основной задачи. Базисом будет A1 A2 A4 а базисными переменными являются x3 x1 x4 Выразим базисные переменные x3 x1 x4 через свободные переменные x2 x5 используя последнюю таблицу Получим

x3 =2,29-x2 -0,x5 x4 =2,295,67x2 +0,71x5 x1 = 2+0,67x2 0,33x5

Подставим эти значения в выражение для функции f основной задачи Получим

f = -14-(-0,6x2-0,71x5) min.

> minimize(-x1-7*x2-2*x3-x4+x5 ,{6*x1+3*x2+x3+x4+x5=20,4*x1+3*x2+x4=12,3*x1-2*x2+x5=6

},NONNEGATIVE);

Список литературы

1. Ашманов С.А. Линейное программирование. -М.: Наука, 1981. -302 c.

2. Бережная Е.В., Бережной В.И. Математические методы моделиро-вание экономических систем: Учеб. пособие. – 2-е изд., перераб. и доп. – М.: Финансы и статистика, 2005. – 432 с.: ил.

3. Васильев Ф.П. Численные методы решения экстремальных задач. - М.: Наука,1980. - 520 c.

4. Дьяконов В.П. Математическая система MAPLE V R3/R4/R5. "Са-лон". - Москва 1998. - 398 c.

5. Исследование операций в экономике: Учеб. пособие для вузов/ Н.Ш. Кремер, Б.А. Путко, И.М. Тришин, М.Н. Фридман: Под ред. проф. Н.Ш. Кремера. – М.: ЮНИТИ, 2003. – 407 с. ISBN 5-9221-0170-6.

6. Карманов В.Г. Математическое программирование.Учеб. пособие - 5-е изд., -М.: ФИЗМАТЛИТ, 2004.- 264с. -

7. Красс М.С., Чупрынов Б. П. Математика для экономистов. – СПб.: Питер, 2005. – 464 с.: ил. – (Серия “Учебное пособие”.

8. Кузнецов А.В., Сакович В.А., Холод Н.И. Высшая математика: ма-тематическое программирование. - Минск: Высшая школа, 1994.-286с.

Примечания

К работе прилагается все исходники.

Покупка готовой работы
Тема: «Исследование операций. Готовые лабораторные работы (5 вариантов готовых)»
Раздел: Информатика
Тип: Лабораторная работа
Страниц: 100
Цена: 900 руб.
Нужна похожая работа?
Закажите авторскую работу по вашему заданию.
  • Цены ниже рыночных
  • Удобный личный кабинет
  • Необходимый уровень антиплагиата
  • Прямое общение с исполнителем вашей работы
  • Бесплатные доработки и консультации
  • Минимальные сроки выполнения

Мы уже помогли 24535 студентам

Средний балл наших работ

  • 4.89 из 5
Узнайте стоимость
написания вашей работы

У нас можно заказать

(Цены могут варьироваться от сложности и объема задания)

Контрольная на заказ

Контрольная работа

от 100 руб.

срок: от 1 дня

Реферат на заказ

Реферат

от 700 руб.

срок: от 1 дня

Курсовая на заказ

Курсовая работа

от 1500 руб.

срок: от 3 дней

Дипломная на заказ

Дипломная работа

от 8000 руб.

срок: от 6 дней

Отчет по практике на заказ

Отчет по практике

от 1500 руб.

срок: от 3 дней

Решение задач на заказ

Решение задач

от 100 руб.

срок: от 1 дня

Лабораторная работа на заказ

Лабораторная работа

от 200 руб.

срок: от 1 дня

Доклад на заказ

Доклад

от 300 руб.

срок: от 1 дня

682 автора

помогают студентам

42 задания

за последние сутки

10 минут

время отклика

Похожие работы
  • Лабораторная работа:

    Методы оптимальных решений Вариант 3 (1-7лаб)

    40 страниц(ы) 

    Лабораторная работа № 1
    Лабораторная работа № 2
    Лабораторная работа № 3
    Лабораторная работа № 4
    Лабораторная работа № 5
    Лабораторная работа № 6
    Лабораторная работа № 7
  • Отчет по практике:

    Логические операции и стандартные функции VBA

    13 страниц(ы) 

    Лабораторная работа №9…3
    Ход работы….4
    Контрольные вопросы….10
    Вывод по проделанной работе….13
  • Контрольная работа:

    Готовые решения задач на алгоритмическом языке Паскаль. УГНТУ. Вариант 70

    24 страниц(ы) 

    Работа 1. ПРОГРАММИРОВАНИЕ ЛИНЕЙНОГО ВЫЧИСЛИТЕЛЬНОГО ПРОЦЕССА
    Разработать программу вычисления значений заданных функций для произвольных значений исходных данных. Выполнить тестовый расчет и расчет для заданных значений исходных данных.
    Работа 2. ПРОГРАММИРОВАНИЕ АРИФМЕТИЧЕСКОГО ЦИКЛА.
    Разработать программу табулирования (вычисления таблицы значений) функции для произвольного диапазона изменения независимого параметра или аргумента. Выполнить расчет для заданных значений исходных данных.
    Результаты расчетов вывести в табличной форме, например, для
    3 варианта таблица должна иметь следующий вид:
    1. Табулирование функции
    Работа 3. ПРОГРАММИРОВАНИЕ РАЗВЕТВЛЯЮЩЕГОСЯ ВЫЧИСЛИТЕЛЬНОГО ПРОЦЕССА
    Разработать программу вычисления значений заданной кусочно-непрерывной функции для произвольных значений исходных данных. Подготовить исходные данные для контрольного расчета значения функции по каждой формуле. Выполнить контрольные расчеты и расчет для заданных исходных данных
    Работа 4. ПРОГРАММИРОВАНИЕ ИТЕРАЦИОННОГО ЦИКЛА
    Функция y(x) задана двумя способами: формулой y = f(x) и ее разложением в бесконечный ряд S.
    Разработать программу вычисления точного yT и приближенного yP значений функции y(x) при изменении её аргумента x от a до b с шагом x. Приближенное значение вычислять путем суммирования членов ряда до достижения требуемой точности   yTyP  . Предусмотреть завершение процесса суммирования членов ряда по заданному максимальному номеру члена ряда n для предотвращения зацикливания итерационного цикла. Результаты расчетов вывести в виде следующей таблицы.
    Суммирование ряда
    Аргумент Точное значение Приближенное значение Количество слагаемых Ошибка
    0.20
    0.30
    .
    .
    .
    0.80 0.16053
    0.21267
    .
    .
    .
    0.28540 0.16053
    0.21270
    .
    .
    .
    0.28542 3
    3
    .
    .
    .
    5 -0.000003
    -0.000032
    .
    .
    .
    -0.000015
    Работа 5. ПРОГРАММИРОВАНИЕ МАТРИЧНЫХ ОПЕРАЦИЙ
    Разработать программу решения четырех взаимосвязанных задач частой работы:
    1) расчета элементов квадратной матрицы A = (ai,j ), i,j = 1,2,.,n по заданной формуле;
    2) вычисления элементов вектора X = (xi), i = 1,2,.,n по заданному правилу;
    3) требуемого упорядочения элементов матрицы А или вектора Х;
    4) вычисления значения y по заданной формуле.
    Размерность задачи n назначается преподавателем.
  • Контрольная работа:

    Готовые решения задач на алгоритмическом языке Паскаль. УГНТУ. Вариант 66

    23 страниц(ы) 

    Работа 1. ПРОГРАММИРОВАНИЕ ЛИНЕЙНОГО ВЫЧИСЛИТЕЛЬНОГО ПРОЦЕССА
    Разработать программу вычисления значений заданных функций для произвольных значений исходных данных. Выполнить тестовый расчет и расчет для заданных значений исходных данных.
    Работа 2. ПРОГРАММИРОВАНИЕ АРИФМЕТИЧЕСКОГО ЦИКЛА.
    Разработать программу табулирования (вычисления таблицы значений) функции для произвольного диапазона изменения независимого параметра или аргумента. Выполнить расчет для заданных значений исходных данных.
    Результаты расчетов вывести в табличной форме, например, для
    3 варианта таблица должна иметь следующий вид:
    1. Табулирование функции
    Работа 3. ПРОГРАММИРОВАНИЕ РАЗВЕТВЛЯЮЩЕГОСЯ ВЫЧИСЛИТЕЛЬНОГО ПРОЦЕССА
    Разработать программу вычисления значений заданной кусочно-непрерывной функции для произвольных значений исходных данных. Подготовить исходные данные для контрольного расчета значения функции по каждой формуле. Выполнить контрольные расчеты и расчет для заданных исходных данных
    Работа 4. ПРОГРАММИРОВАНИЕ ИТЕРАЦИОННОГО ЦИКЛА
    Функция y(x) задана двумя способами: формулой y = f(x) и ее разложением в бесконечный ряд S.
    Разработать программу вычисления точного yT и приближенного yP значений функции y(x) при изменении её аргумента x от a до b с шагом x. Приближенное значение вычислять путем суммирования членов ряда до достижения требуемой точности   yTyP  . Предусмотреть завершение процесса суммирования членов ряда по заданному максимальному номеру члена ряда n для предотвращения зацикливания итерационного цикла. Результаты расчетов вывести в виде следующей таблицы.
    Суммирование ряда
    Аргумент Точное значение Приближенное значение Количество слагаемых Ошибка
    0.20
    0.30
    .
    .
    .
    0.80 0.16053
    0.21267
    .
    .
    .
    0.28540 0.16053
    0.21270
    .
    .
    .
    0.28542 3
    3
    .
    .
    .
    5 -0.000003
    -0.000032
    .
    .
    .
    -0.000015
    Работа 5. ПРОГРАММИРОВАНИЕ МАТРИЧНЫХ ОПЕРАЦИЙ
    Разработать программу решения четырех взаимосвязанных задач частой работы:
    1) расчета элементов квадратной матрицы A = (ai,j ), i,j = 1,2,.,n по заданной формуле;
    2) вычисления элементов вектора X = (xi), i = 1,2,.,n по заданному правилу;
    3) требуемого упорядочения элементов матрицы А или вектора Х;
    4) вычисления значения y по заданной формуле.
    Размерность задачи n назначается преподавателем.
  • Контрольная работа:

    Готовые решения задач на алгоритмическом языке Паскаль. УГНТУ. Вариант 68

    22 страниц(ы) 

    Работа 1. ПРОГРАММИРОВАНИЕ ЛИНЕЙНОГО ВЫЧИСЛИТЕЛЬНОГО ПРОЦЕССА
    Разработать программу вычисления значений заданных функций для произвольных значений исходных данных. Выполнить тестовый расчет и расчет для заданных значений исходных данных.
    Работа 2. ПРОГРАММИРОВАНИЕ АРИФМЕТИЧЕСКОГО ЦИКЛА.
    Разработать программу табулирования (вычисления таблицы значений) функции для произвольного диапазона изменения независимого параметра или аргумента. Выполнить расчет для заданных значений исходных данных.
    Результаты расчетов вывести в табличной форме, например, для
    3 варианта таблица должна иметь следующий вид:
    1. Табулирование функции
    Работа 3. ПРОГРАММИРОВАНИЕ РАЗВЕТВЛЯЮЩЕГОСЯ ВЫЧИСЛИТЕЛЬНОГО ПРОЦЕССА
    Разработать программу вычисления значений заданной кусочно-непрерывной функции для произвольных значений исходных данных. Подготовить исходные данные для контрольного расчета значения функции по каждой формуле. Выполнить контрольные расчеты и расчет для заданных исходных данных
    Работа 4. ПРОГРАММИРОВАНИЕ ИТЕРАЦИОННОГО ЦИКЛА
    Функция y(x) задана двумя способами: формулой y = f(x) и ее разложением в бесконечный ряд S.
    Разработать программу вычисления точного yT и приближенного yP значений функции y(x) при изменении её аргумента x от a до b с шагом x. Приближенное значение вычислять путем суммирования членов ряда до достижения требуемой точности   yTyP  . Предусмотреть завершение процесса суммирования членов ряда по заданному максимальному номеру члена ряда n для предотвращения зацикливания итерационного цикла. Результаты расчетов вывести в виде следующей таблицы.
    Суммирование ряда
    Аргумент Точное значение Приближенное значение Количество слагаемых Ошибка
    0.20
    0.30
    .
    .
    .
    0.80 0.16053
    0.21267
    .
    .
    .
    0.28540 0.16053
    0.21270
    .
    .
    .
    0.28542 3
    3
    .
    .
    .
    5 -0.000003
    -0.000032
    .
    .
    .
    -0.000015
    Работа 5. ПРОГРАММИРОВАНИЕ МАТРИЧНЫХ ОПЕРАЦИЙ
    Разработать программу решения четырех взаимосвязанных задач частой работы:
    1) расчета элементов квадратной матрицы A = (ai,j ), i,j = 1,2,.,n по заданной формуле;
    2) вычисления элементов вектора X = (xi), i = 1,2,.,n по заданному правилу;
    3) требуемого упорядочения элементов матрицы А или вектора Х;
    4) вычисления значения y по заданной формуле.
    Размерность задачи n назначается преподавателем.
  • Контрольная работа:

    Готовые решения задач на алгоритмическом языке Паскаль. УГНТУ. Вариант 58

    22 страниц(ы) 

    Работа 1. ПРОГРАММИРОВАНИЕ ЛИНЕЙНОГО ВЫЧИСЛИТЕЛЬНОГО ПРОЦЕССА
    Разработать программу вычисления значений заданных функций для произвольных значений исходных данных. Выполнить тестовый расчет и расчет для заданных значений исходных данных.
    Работа 2. ПРОГРАММИРОВАНИЕ АРИФМЕТИЧЕСКОГО ЦИКЛА.
    Разработать программу табулирования (вычисления таблицы значений) функции для произвольного диапазона изменения независимого параметра или аргумента. Выполнить расчет для заданных значений исходных данных.
    Результаты расчетов вывести в табличной форме, например, для
    3 варианта таблица должна иметь следующий вид:
    1. Табулирование функции
    Работа 3. ПРОГРАММИРОВАНИЕ РАЗВЕТВЛЯЮЩЕГОСЯ ВЫЧИСЛИТЕЛЬНОГО ПРОЦЕССА
    Разработать программу вычисления значений заданной кусочно-непрерывной функции для произвольных значений исходных данных. Подготовить исходные данные для контрольного расчета значения функции по каждой формуле. Выполнить контрольные расчеты и расчет для заданных исходных данных
    Работа 4. ПРОГРАММИРОВАНИЕ ИТЕРАЦИОННОГО ЦИКЛА
    Функция y(x) задана двумя способами: формулой y = f(x) и ее разложением в бесконечный ряд S.
    Разработать программу вычисления точного yT и приближенного yP значений функции y(x) при изменении её аргумента x от a до b с шагом x. Приближенное значение вычислять путем суммирования членов ряда до достижения требуемой точности   yTyP  . Предусмотреть завершение процесса суммирования членов ряда по заданному максимальному номеру члена ряда n для предотвращения зацикливания итерационного цикла. Результаты расчетов вывести в виде следующей таблицы.
    Суммирование ряда
    Аргумент Точное значение Приближенное значение Количество слагаемых Ошибка
    0.20
    0.30
    .
    .
    .
    0.80 0.16053
    0.21267
    .
    .
    .
    0.28540 0.16053
    0.21270
    .
    .
    .
    0.28542 3
    3
    .
    .
    .
    5 -0.000003
    -0.000032
    .
    .
    .
    -0.000015
    Работа 5. ПРОГРАММИРОВАНИЕ МАТРИЧНЫХ ОПЕРАЦИЙ
    Разработать программу решения четырех взаимосвязанных задач частой работы:
    1) расчета элементов квадратной матрицы A = (ai,j ), i,j = 1,2,.,n по заданной формуле;
    2) вычисления элементов вектора X = (xi), i = 1,2,.,n по заданному правилу;
    3) требуемого упорядочения элементов матрицы А или вектора Х;
    4) вычисления значения y по заданной формуле.
    Размерность задачи n назначается преподавателем.

Предыдущая работа

База данных в Access