
«Лабораторные работы № 1-8 по Численным методам. (БирГСПА) excel» - Лабораторная работа
- 29.06.2016
- 35
- 1234
Содержание
Введение
Выдержка из текста работы
Заключение
Список литературы
Примечания

Автор: navip
Содержание
Лабораторная работа № 1 4
Лабораторная работа № 2 10
Лабораторная работа № 3 15
Лабораторная работа № 4 19
Лабораторная работа № 5 23
Лабораторная работа № 6 28
Лабораторная работа № 7 31
Лабораторная работа № 8 33
Введение
Лабораторная работа № 1
(Решение нелинейных уравнений. Метод половинного деления.)
Постановка задачи. Найти корень нелинейного уравнения методом итерации с точностью .
Решение задачи. Отделим корень уравнения на отрезке [2; 3] графическим методом. Для этого табулируем функцию на данном отрезке построим график.
Выделим отрезок [2; 3] , содержащий изолированный корень, для уточнения которого применим метод половинного деления по схеме , , , где , . Полагая , , а так же условие остановки деления отрезка пополам , составим таблицу
корень погрешность Усл.ост.
2 3 2,5 -14,18594854 6,1776 -5,71944 - 0,5 нет
2,5 3 2,75 -5,719442882 6,1776 -0,07072 - 0,25 нет
2,75 3 2,875 -0,070719841 6,1776 2,996705 - 0,125 нет
2,75 2,875 2,8125 -0,070719841 2,996705 1,446466 - 0,0625 нет
2,75 2,8125 2,78125 -0,070719841 1,446466 0,683454 - 0,03125 нет
2,75 2,78125 2,765625 -0,070719841 0,683454 0,305226 - 0,015625 нет
2,75 2,765625 2,757813 -0,070719841 0,305226 0,116964 - 0,0078125 нет
2,75 2,757813 2,753906 -0,070719841 0,116964 0,023049 - 0,00390625 нет
2,75 2,753906 2,751953 -0,070719841 0,023049 -0,02385 - 0,001953125 нет
2,751953 2,753906 2,75293 -0,023853741 0,023049 -0,00041 - 0,000976563 нет
2,75293 2,753906 2,753418 -0,000406954 0,023049 0,01132 - 0,000488281 нет
2,75293 2,753418 2,753174 -0,000406954 0,01132 0,005456 - 0,000244141 нет
2,75293 2,753174 2,753052 -0,000406954 0,005456 0,002525 - 0,00012207 нет
2,75293 2,753052 2,752991 -0,000406954 0,002525 0,001059 2,752991 0,000061035 да
Приближенное решение 2,752991, погрешность 0,000061035, число итераций .
0,000061035 Округлим 2,753 0,000009+0,000061035=0,00007.
Ответ: 2,753 0,00007
14
корень погрешность Усл.ост.
-1 2 0,5 17,82942 -14,1859 -9,33851 - 1,5 нет
-1 0,5 -0,25 17,82942 -9,33851 5,010579 - 0,75 нет
-0,25 0,5 0,125 5,010579 -9,33851 -2,47787 - 0,375 нет
-0,25 0,125 -0,0625 5,010579 -2,47787 1,253093 - 0,1875 нет
-0,0625 0,125 0,03125 1,253093 -2,47787 -0,62392 - 0,09375 нет
-0,0625 0,03125 -0,01563 1,253093 -0,62392 0,312731 - 0,046875 нет
-0,01563 0,03125 0,007813 0,312731 -0,62392 -0,15619 - 0,0234375 нет
-0,01563 0,007813 -0,00391 0,312731 -0,15619 0,07814 - 0,01171875 нет
-0,00391 0,007813 0,001953 0,07814 -0,15619 -0,03906 - 0,005859375 нет
-0,00391 0,001953 -0,00098 0,07814 -0,03906 0,019532 - 0,002929688 нет
-0,00098 0,001953 0,000488 0,019532 -0,03906 -0,00977 - 0,001464844 нет
-0,00098 0,000488 -0,00024 0,019532 -0,00977 0,004883 - 0,000732422 нет
-0,00024 0,000488 0,000122 0,004883 -0,00977 -0,00244 - 0,000366211 нет
-0,00024 0,000122 -6,1E-05 0,004883 -0,00244 0,001221 - 0,00018311 нет
-6,1E-05 0,000122 3,05E-05 0,001221 -0,00244 -0,00061 0,00003052 0,00009155 да
Приближенное решение 0,00003052, погрешность 0,000061035, число итераций 15
0,00009155 Округлим 0,00003 0,0000006.
Ответ: 0,00003 0,0000006 15
Выдержка из текста работы
Лабораторная работа № 2
(Решение нелинейных уравнений. Метод итерации.)
Постановка задачи. Найти корень нелинейного уравнения методом итерации с точностью .
Решение задачи. Отделим корень уравнения на отрезке [2; 3] графическим методом. Для этого табулируем функцию на данном отрезке и построим график.
0,0001,
-4,
4,
Выделим отрезок [2; 3] , где находится корень, и уточним его методом итерации.
Получим равносильное уравнению уравнение .
Тогда получим следующее значение условие остановки итерационной последовательности , при выборе приближенного решения с погрешностью приближенного решения .
Результаты в таблицу получим
a= 2
b= 3
X Условие остановки
итерации
2 -1 1 нет
2,04167 -0,61448 0,04167 нет
2,067275 -0,36706 0,025605353 нет
2,082571 -0,21539 0,015295453 нет
2,091546 -0,12503 0,008975391 нет
2,096756 -0,07212 0,005210116 нет
2,099761 -0,04144 0,003005102 нет
2,101488 -0,02376 0,00172682 нет
2,102478 -0,01361 0,000990138 да
Приближенное решение 2,102478, погрешность 0,00061035, число итераций 9
0,00061035 Округлим 2,102 0,00009+0,00061035=0,0007.
Ответ: 2,102 0,0007
9
Лабораторная работа № 3
Тема: Решение нелинейных уравнений. Метод хорд.
Задание: 1) Отделить корни уравнения графически и программно.
2) Уточнить корни уравнения методом хорд с точностью .
3) Нарисовать схему применения метода к каждому корню уравнения.
7
Решение задачи. Отделим корень уравнения на отрезке [-2; 1] графическим методом. Для этого табулируем функцию f(x)= на данном отрезке построим график.
Для формализации модели используем математические формулы.
уравнение прямой, проходящей через две точки, где x1 = a, x2 = в, y1 = f(a), y2 = f(в).
После математических преобразований уравнение примет вид .
Определим корень уравнения
fb x fx abs(x1-x2) проверка условия
1,2 -1,338028 -3,001132 0,071759 ---
1,2 -1,409787 -2,962267 0,000000 -1,410
1,2 -1,409787 -2,962267 0,000000 -1,410
1,2 -1,409787 -2,962267 0,000000 -1,410
1,2 -1,409787 -2,962267 0,000000 -1,410
1,2 -1,409787 -2,962267 1,409787 ---
Ответ: -1,409787
Лабораторная работа № 4
Тема: Решение нелинейных уравнений. Метод касательных (Ньютона).
Задание: 1) Отделить корни уравнения графически и программно.
2) Уточнить корни уравнения методом касательных с точностью .
3) Нарисовать схему применения метода к каждому корню уравнения.
7
Найдем корни уравнения:
Используем для этого Метод Ньютона.
Пусть корень ξ уравнения f(x)=0 отделен на отрезке [a,b]. Предположим мы нашли (n-1)-ое приближение корня xn-1. Тогда n-ое приближение xn мы можем получить следующим образом. Положим:
xn = xn-1 + hn-1
Раскладывая в ряд f(x=ξ) в точке xn-1, получим:
f(xn) = f(xn-1+hn-1) = f(xn-1) + f’(xn-1)hn-1=0
Отсюда следует:
hn-1 = -f(xn-1)df/dx(xn-1)
Подставим hn-1 в формулу, получим:
xn = xn-1 -f(xn-1)df/dx(xn-1)
Геометрически метод Ньютона эквивалентен замене дуги кривой y=f(x) касательной, проведенной в некоторой точке кривой.
Находим первую производную:
dF/dx = 3x2+4x-2e2x-1
Находим вторую производную:
d2F/dx2 = 6x+4-4e2x-1
Возьмем промежуток содержащий корень [-3; -2]
Решение нелинейного уравнения методом Ньютона в Excel
a -3 -3 -3
b -2 -2 -2
F(a) dF(a) dF2(a)
-9,00091 14,99818 -14,0036
F(b) dF(b) dF2(b)
-0,00674 3,986524 -14,027
x0 -3
x1 -2
N X F(X) dF(X) h = F(X) / F'(X)
1 -3 -9,00091 14,99818 -0,600133759
2 -2,39987 -2,306 7,672552 -0,300552035
3 -2,09931 -0,44321 4,813055 -0,092085743
4 -2,00723 -0,03576 4,044702 -0,008842301
5 -1,99839 -0,00031 3,973578 -7,92218E-05
6 -1,99831 -2,5E-08 3,972943 -6,33242E-09
7 -1,99831 -1,3E-16 3,972942 -3,1656E-17
8 -1,99831 -1,3E-16 3,972942 -3,1656E-17
9 -1,99831 -1,3E-16 3,972942 -3,1656E-17
10 -1,99831 -1,3E-16 3,972942 -3,1656E-17
Возьмем промежуток содержащий корень [-1; 0]
Решение нелинейного уравнения методом Ньютона в Excel
a -1 -1 -1
b 0 0 0
F(a) dF(a) dF2(a)
0,950213 -1,09957 -2,19915
F(b) dF(b) dF2(b)
-0,36788 -0,73576 -1,47152
x0 0
x1 -1
N X F(X) dF(X) h = F(X) / F'(X)
1 0 0,950213 -1,09957 -0,86416
2 0,864164 0,067286 1,553767 0,043305
3 0,82086 0,000981 1,505382 0,000652
4 0,820208 2,82E-07 1,504516 1,87E-07
5 0,820208 2,33E-14 1,504516 1,55E-14
6 0,820208 0 1,504516 0
7 0,820208 0 1,504516 0
8 0,820208 0 1,504516 0
9 0,820208 0 1,504516 0
10 0,820208 0 1,504516 0
Возьмем промежуток содержащий корень [0; 1]
Решение нелинейного уравнения методом Ньютона в Excel
a 0 0 0
b 1 1 1
F(a) dF(a) dF2(a)
-0,36788 -0,73576 2,528482
F(b) dF(b) dF2(b)
0,281718 1,563436 -3,87313
x0 1
x1 0
N X F(X) dF(X) h = F(X) /F'(X)
1 1 -0,36788 -0,73576 0,5
2 0,5 -0,375 0,75 -0,5
3 1 0,281718 1,563436 0,180192
4 0,819808 -0,0006 1,503982 -0,0004
5 0,820208 1,07E-07 1,504516 7,09E-08
6 0,820208 3,33E-15 1,504516 2,21E-15
7 0,820208 0 1,504516 0
8 0,820208 0 1,504516 0
9 0,820208 0 1,504516 0
10 0,820208 0 1,504516 0
Возьмем промежуток содержащий корень [1; 2]
Решение нелинейного уравнения методом Ньютона в Excel
a 1 1 1
b 2 2 2
F(a) dF(a) dF2(a)
0,281718 1,563436 -0,87313
F(b) dF(b) dF2(b)
-4,08554 -20,1711 -66,3421
x0 2
x1 1
N X F(X) dF(X) h = F(X) / F'(X)
1 2 0,281718 1,563436 0,180192
2 1,819808 -1,35776 -10,8013 0,125704
3 1,694105 -0,29192 -6,40155 0,045602
4 1,648503 -0,02933 -5,14202 0,005704
5 1,642799 -0,00042 -4,99556 8,38E-05
6 1,642715 -9E-08 -4,99343 1,79E-08
7 1,642715 0 -4,99343 0
8 1,642715 0 -4,99343 0
9 1,642715 0 -4,99343 0
10 1,642715 0 -4,99343 0
Ответ:
корень ξ1=-1,99831 3,1656*10-17
корень ξ2=0,820208 1,55*10-14
корень ξ3=0,820208 2,21*10-15
корень ξ4=1,642715 1,79*10-8
Лабораторная работа № 5
Тема: Решение нелинейных уравнений.
Комбинированный метод хорд и касательных.
Задание: 1) Отделить корни уравнения графически и программно.
2) Уточнить корни уравнения данным методом с точностью .
3) Нарисовать схему применения метода к каждому корню уравнения.
7
Комбинированный метод: хорд и касательных.
f(X) = x3-5x2+x-3.2
fI(X) = 3x2-10x+1
f(4,5) < 0
f(5) >0
X* Є [4,5;5]
Хорд Косательных ε
Xo = 1,5 Xo = 2
n Xn n Xn
0 4,5 0 5
1 4,915294 1 4,930769 0,015475
2 4,928825 2 4,928837 1,19E-05
3 4,928835 3 4,928835 7,07E-12
X* = 4,928835
Ответ:
корень X1=-4,928835 7,07*10-12
Заключение
Лабораторная работа № 6
Тема: Решение системы линейных уравнений методом итерации и методом Зейделя.
Задание:
1) Решить систему линейных уравнений методом итерации и методом Зейделя с точностью ;
2) Найти погрешности полученных приближенных решений;
3) Сравнить полученные приближенные решения и их погрешности.
7
Сделаем проверку. Подставим полученное решение в уравнения из системы и выполним вычисления:
2•1 - 5•1 + 2•0.5 = 2 - 5 + 1 = -2
1 + 1 - 4•0.5 = 1 + 1 - 2 = 0
-7•1 + 3•1 + 2•0.5 = -7 + 3 + 1 = -3
Проверка выполнена успешно.
x1 = 1
x2 = 1
x3 = 0.5
Решение.
Точное решение:
x1 = 1
x2 = 1
x3 = 0.5
Приведем данную систему к виду , где
Реализуем итерации.
x1 x2 x3 B
1 0 -1,4 0,3
-0,55556 1 0 0,444444
0 -0,7 1 -0,2
N x1 x2 x3 e1 e2 e3
1 0 0 0 0 0 0
2 0,3 0,444444 -0,2 0,3 0,444444 0,2
3 0,02 0,611111 0,111111 -0,28 0,166667 -0,08889
4 0,455556 0,455556 0,227778 0,435556 -0,15556 0,116667
5 0,618889 0,697531 0,118889 0,163333 0,241975 -0,10889
6 0,466444 0,788272 0,288272 -0,15244 0,090741 0,169383
7 0,70358 0,70358 0,35179 0,237136 -0,08469 0,063519
8 0,792506 0,835322 0,292506 0,088926 0,131742 -0,05928
9 0,709509 0,884726 0,384726 -0,083 0,049403 0,092219
10 0,838616 0,838616 0,419308 0,129107 -0,04611 0,034582
11 0,887031 0,910342 0,387031 0,048415 0,071726 -0,03228
12 0,841844 0,93724 0,43724 -0,04519 0,026897 0,050208
13 0,912135 0,912135 0,456068 0,070292 -0,0251 0,018828
14 0,938495 0,951186 0,438495 0,026359 0,039051 -0,01757
15 0,913893 0,96583 0,46583 -0,0246 0,014644 0,027336
16 0,952163 0,952163 0,476081 0,03827 -0,01367 0,010251
17 0,966514 0,973424 0,466514 0,014351 0,021261 -0,00957
18 0,953119 0,981397 0,481397 -0,01339 0,007973 0,014883
19 0,973955 0,973955 0,486978 0,020836 -0,00744 0,005581
20 0,981769 0,985531 0,481769 0,007813 0,011575 -0,00521
21 0,974476 0,989871 0,489871 -0,00729 0,004341 0,008103
22 0,98582 0,98582 0,49291 0,011344 -0,00405 0,003039
23 0,990074 0,992122 0,490074 0,004254 0,006302 -0,00284
24 0,986104 0,994486 0,494486 -0,00397 0,002363 0,004412
25 0,99228 0,99228 0,49614 0,006176 -0,00221 0,001654
26 0,994596 0,995711 0,494596 0,002316 0,003431 -0,00154
27 0,992434 0,996998 0,496998 -0,00216 0,001287 0,002402
28 0,995797 0,995797 0,497898 0,003363 -0,0012 0,000901
29 0,997058 0,997665 0,497058 0,001261 0,001868 -0,00084
30 0,995881 0,998365 0,498365 -0,00118 0,000701 0,001308
31 0,997712 0,997712 0,498856 0,001831 -0,00065 0,00049
32 0,998398 0,998729 0,498398 0,000687 0,001017 -0,00046
33 0,997757 0,99911 0,49911 -0,00064 0,000381 0,000712
34 0,998754 0,998754 0,499377 0,000997 -0,00036 0,000267
35 0,999128 0,999308 0,499128 0,000374 0,000554 -0,00025
36 0,998779 0,999515 0,499515 -0,00035 0,000208 0,000388
0,998779
0,999515
0,499515
Решение СЛАУ методом Зейделя
x1 x2 x3 B
-10 0 14 -3
5 -9 0 -4
0 -7 10 -2
N x1 x2 x3 e1 e2 e3
1 0 0 0 0 0 0
2 0,3 0,611111 0,227778 0,3 0,611111 0,227778
3 0,618889 0,788272 0,35179 0,318889 0,17716 0,124012
4 0,792506 0,884726 0,419308 0,173617 0,096454 0,067518
5 0,887031 0,93724 0,456068 0,094525 0,052514 0,03676
6 0,938495 0,96583 0,476081 0,051464 0,028591 0,020014
7 0,966514 0,981397 0,486978 0,028019 0,015566 0,010896
8 0,981769 0,989871 0,49291 0,015255 0,008475 0,005932
9 0,990074 0,994486 0,49614 0,008305 0,004614 0,00323
10 0,994596 0,996998 0,497898 0,004522 0,002512 0,001758
11 0,997058 0,998365 0,498856 0,002462 0,001368 0,000957
12 0,998398 0,99911 0,499377 0,00134 0,000745 0,000521
13 0,999128 0,999515 0,499661 0,00073 0,000405 0,000284
14 0,999525 0,999736 0,499815 0,000397 0,000221 0,000155
Запишем приближенное значение корня только верными значащими цифрами в узком смысле.
0,998779
0,999515
0,499515
Найдем число верных знаков
Лабораторная работа № 7
Тема: Интерполирование функции. Полином Лагранжа.
Задание:
1) Найти приближенное значение функции при заданном значении аргумента с помощью интерполяционного полинома Лагранжа, если функция задана в не равноотстоящих узлах; , ;
2) Оценить погрешность полученного значения.
x y
1.0000 0,9689
1.1000 1,0587
1.2320 1,1740
1.4796 1,3796
1.9383 1,7152
1.9577 1,7279
2.0380 1,7791
Решение.
Составляем расчетную таблицу
x 1,0000 1,1000 1,2320 1,4796 1,9383 1,9577 2,0380
y 0,9689 1,0587 1,174 1,3796 1,7152 1,7279 1,7791 ξ = 1,3000
ξ - хi 0,3000 0,2000 0,0680 -0,1796 -0,6383 -0,6577 -0,7380
xk - хi
1,0000 1,1000 1,2320 1,4796 1,9383 1,9577 2,0380
1,0000 1 0,1000 0,2320 0,4796 0,9383 0,9577 1,0380
1,1000 -0,1000 1 0,1320 0,3796 0,8383 0,8577 0,9380
1,2320 -0,2320 -0,1320 1 0,2476 0,7063 0,7257 0,8060
1,4796 -0,4796 -0,3796 -0,2476 1 0,4587 0,4781 0,5584
1,9383 -0,9383 -0,8383 -0,7063 -0,4587 1 0,0194 0,0997
1,9577 -0,9577 -0,8577 -0,7257 -0,4781 -0,0194 1 0,0803
2,0380 -1,0380 -0,9380 -0,8060 -0,5584 -0,0997 -0,0803 1
Pik=(ξ - хi)/(xk-xi) ПРik yiПРik
1,0000 1,0000 2,0000 0,2931 -0,3745 -0,6803 -0,6867 -0,7110 0,0729 0,0706
1,1000 -3,0000 1,0000 0,5152 -0,4731 -0,7614 -0,7668 -0,7868 -0,3359 -0,3556
1,2320 -1,2931 -1,5152 1,0000 -0,7254 -0,9037 -0,9063 -0,9156 1,0658 1,2512
1,4796 -0,6255 -0,5269 -0,2746 1,0000 -1,3915 -1,3757 -1,3216 0,2290 0,3159
1,9383 -0,3197 -0,2386 -0,0963 0,3915 1,0000 -33,902 -7,4022 -0,7216 -1,2377
1,9577 -0,3133 -0,2332 -0,0937 0,3757 32,9021 1,0000 -9,1905 0,7775 1,3434
2,0380 -0,2890 -0,2132 -0,0844 0,3216 6,4022 8,1905 1,0000 -0,0877 -0,1560
1,231915
1,231915
Оценим погрешность приближения с помощью выражения
Составляем расчетную таблицу.
y Δ1y Δ2y Δ3y Δ4y Δ5y Δ6y
0,9689 0,0898 0,0255 0,0648 -0,0251 -0,4675 1,7744
1,0587 0,1153 0,0903 0,0397 -0,4926 1,3069
1,174 0,2056 0,13 -0,4529 0,8143
1,3796 0,3356 -0,3229 0,3614
1,7152 0,0127 0,0385
1,7279 0,0512
1,7791
0,000227
(n+1)! 720
R = 0,0000006
Получаем решение:
1,231915
R =0,0000006
Запишем приближенное значение корня только верными значащими цифрами в узком смысле.
Округлим 1,231915 до
Получаем решение
1,231915 0,0000006
Лабораторная работа № 8
Задание:
1) Найти приближенное значение функции при заданном значении аргумента с помощью соответствующего интерполяционного полинома Ньютона, если функция задана в равноотстоящих узлах;
2) Оценить погрешность полученного значения.
x 1,0000 1,1500 1,3000 1,4500 1,6000 1,7500 1,9000
y 0,6664 0,4329 0,2406 0,0903 -0,0178 -0,0861 -0,1185
ξ = 1,5200
Решение.
Из расположения заданных точек на графике можно заключить, что искомая функция скорее всего монотонна на рассматриваемом отрезке, поэтому обратная задача имеет единственное решение.
Решим данную задачу, используя первую интерполяционную формулу Ньютона:
Таблица конечных разностей для интерполирования по формулам Ньютона
Табличные значения Конечные разности
x y Δy1 Δy2 Δy3 Δy4 Δy5 Δy6
1,00000 0,66640 -0,23350 0,04120 0,00080 -0,00060 -0,00200 0,00310
1,15000 0,43290 -0,19230 0,04200 0,00020 -0,00260 0,00110
1,30000 0,24060 -0,15030 0,04220 -0,00240 -0,00150
1,45000 0,09030 -0,10810 0,03980 -0,00390
1,60000 -0,01780 -0,06830 0,03590
1,75000 -0,08610 -0,03240
1,90000 -0,11850
Расчетная таблица.
h 1,4700 П(x-xi) n n! Δy П(h)
0,150 0,47 0,47 1 1 -0,23350 0,150000 -0,731633
0,150 0,32 0,1504 2 2 0,04120 0,022500 0,137700
0,150 0,17 0,025568 3 6 0,00080 0,003375 0,001010
0,150 0,02 0,0005114 4 24 -0,00060 0,000506 -0,000025
0,150 -0,13 -0,000066 5 120 -0,00200 0,000076 0,000015
0,150 -0,28 0,000019 6 720 0,00310 0,000011 0,000007
-0,592927 0,073473
0,073473
0,0000000017=1,7*10-9
Список литературы
1. Демидович Б.Н., Марон И.А. Основы вычислительной математики. -М.: Наука, 1966.- 664 с.
2. Бахвалов Н.С. Численные методы -М.: Наука, 1975. – 632 с.
3. Березин Н.С., Жидков Н.П. Методы вычислений. – Т.1. - М.: Наука, 1966. – 464 с.
4. Березин Н.С., Жидков Н.П. Методы вычислений. – Т.2. - М.: Физматгиз, 1962.- 640 с.
5. Самарский А.А. Теория разностных схем. - М.: Наука, 1983.
6. Иванов В.В. Методы вычислений на ЭВМ. Киев: Наукова думка, 1986.
7. Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. -М.: Наука, 1986, - 288 с.
8. Сборник Задач по методам вычислений: Учебное пособие: Для вузов. / Под ред. П.И. Монастырского. - 2-е изд. перераб. и доп. -М.: Физматлит, 1994. -320 с.
9. Воробьева Г.Н., Данилова А.Н. Практикум по вычислительной математике. -М.: Высшая школа, 1990.
10. Лапчик М.П. Рагулина М.И., Хеннер Е.К. Численные методы: Уч. Пособие для ст. вузов. –М.: Изд. Центр «Академия», 2004. – 384 с.
11. Васильев Ф.П. Численные методы решения экстремальных задач: Учебное пособие для вузов - 2-е изд., перераб. и доп. -М.: Наука, Гл. ред. физ.-мат. лит, 1988. -550 с.
12. Васильев Ф.П. Методы решения экстремальных задач -М.: Наука, 1981. -400 с.
13. Марчук Г.И. Методы вычислительной математики. – М.: Наука, 1980. -536 с.
14. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. – М.: Наука, 1976. - 544 с.
15. Самарский А.А. Введение в численные методы. – 3-е изд., перераб. – М.: Наука, 1997. - 239 с.
16. Тихонов А.Н., Самарский А.А. Уравнения математической физики. – М.: Наука, 1972.
17. Шикин Е.В., Плис А.И. Кривые и поверхности на экране компьютера. Руководство по сплайнам для пользователей. – М.: Диалог-МИФИ, 1996 – 240 с.
18. Альберг Дж., Нильсон Э., Уолш Дж. Теория сплайнов и их приложения. М.: Наука, 1972.
19. Де Бор К. Практическое руководство по сплайнам. - М.: Наука, 1983.
20. Foley J.D., van Dam A., Feiner S.K., Hugues J.F. Computer graphics. Principles and practice. Addison-Wesley Pub. Com. 991.
21. Боглаев Ю.П. Вычислительная математика и программирование. М.: Высшая школа, 1990.
22. Демидович Б.П., Марон И.А., Шувалова Э.З. Численные методы анализа. -М.: Физ.-мат. лит. 1967.
23. Хайрер Э., Нерсетт С., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Нежесткие задачи: Пер. с англ. - М.: Мир, 1990. 512 c.
24. Современные численные методы решения обыкновенных дифференциальных уравнений / Под ред. Дж. Холла, Дж. Уатта. М.: Мир, 1979. 312 c.
25. Деккер К., Вервер Я. Устойчивость методов Рунге-Кутты для жестких нелинейных дифференциальных уравнений.- М.: Мир, 1988. 332 c.
26. Олемской И. В. О численном методе интегрирования систем обыкновенных дифференциальных уравнений // Оптимальное управление в механических системах. Л., 1983. C.178-185.
27. Амосов А.А., Дубинский Ю.А., Копченова Н.В. Вычислительные методы для инженеров: Учеб. пособие. – М.: Высш. Шк., 1994. – 544 с.
28. Латыпов И.И. Численные методы. Лабораторный практикум: Учебное пособие для студентов физико-математического факультета по основам численных методов. Книга 1.– Бирск: Бирск.гос.соц.-пед.акад., 2007. – 94 с.
Примечания
В работе также есть подробное решение ( все формулы отображаются)
К работе прилагается все необходимое для сдачи (Формат: Word отчет с расчетами. Расчеты прилагаются (Excel)
Работа под Лабораторный практикум Численные методы. Лабораторный практикум: Учебное пособие для студентов физико-математического факультета по основам численных методов. Книга 1.– Бирск: Бирск.гос.соц.-пед.акад., 2007. – 94 с. Латыпов И.И.
. (БирГСПА)
Тема: | «Лабораторные работы № 1-8 по Численным методам. (БирГСПА) excel» | |
Раздел: | Информатика | |
Тип: | Лабораторная работа | |
Страниц: | 35 | |
Стоимость текста работы: | 2900 руб. |
Закажите авторскую работу по вашему заданию.
- Цены ниже рыночных
- Необходимый уровень антиплагиата
- Прямое общение с исполнителем вашей работы
- Бесплатные доработки и консультации
- Минимальные сроки выполнения
- Пишем сами, без нейросетей
Мы уже помогли 24535 студентам
Средний балл наших работ
- 4.89 из 5
написания вашей работы
-
Дипломная работа:
52 страниц(ы)
ВВЕДЕНИЕ….….3
ГЛАВА I. ТВОРЧЕСТВО И. А. ФРОЛОВА В КОНТЕКСТЕ СОВРЕМЕННОЙ УФИМСКОЙ ЛИТЕРАТУРЫ
1.1. Уфимская литература как особый раздел российской литературы….71.2. Творчество Игоря Фролова в восприятии критики …10РазвернутьСвернуть
1.3. Своеобразие творческой манеры писателя….13
ГЛАВА II. ЧЕЛОВЕК И ОБЩЕСТВО В ПРОИЗВЕДЕНИЯХ И.А. ФРОЛОВА
2.1. Герои нашего времени в рассказе И. А. Фролова «Наша маленькая скрипка»….17
2.2. Истинное назначение художника в рассказе писателя «Учитель Бога»….22
2.3. Военная тематика в произведениях Игоря Фролова….….28
ГЛАВА III. МЕТОДИЧЕСКИЕ АСПЕКТЫ ИЗУЧЕНИЯ ТВОРЧЕСТВА И.А. ФРОЛОВА В СТАРШИХ КЛАССАХ
3.1. Методические рекомендации к урокам по литературному краеведению (на материале прозы И.А. Фролова).….….34
3.2. Внеклассное мероприятие по литературе на тему: «Строка, крапленная Афганом…» по произведению И.А. Фролова «Бортжурнал 57-22-10»….38
ЗАКЛЮЧЕНИЕ….45
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ….47
-
Курсовая работа:
Аудит материально-производственных запасов
63 страниц(ы)
Введение 3
1 Теоретические аспекты аудита товарно-материальных ценностей 5
1.1 Перечень нормативных документов, регулирующих порядок бухгалтерского учета товарно-материальных ценностей. 51.2 Понятие, цель, задачи аудита материально-производственных запасов 7РазвернутьСвернуть
1.3 Методика проведения аудита материально-производственных запасов 9
1.4 Типичные ошибки бухгалтерского учета материально-производственных запасов 14
2 Аудиторская проверка учета материально-производственных запасов на ООО «Потенциал» 18
2.1 Краткая характеристика ООО «Потенциал» 18
2.2 Планирование аудита материально-производственных запасов 20
2.3 Порядок проведения аудита материально-производственных запасов 32
2.4 Разработка рекомендаций по совершенствованию учета материально-производственных запасов по результатам проведенной аудиторской проверки 45
Заключение 48
Список использованных источников 52
Приложения А 54
Приложение Б 57
-
Дипломная работа:
90 страниц(ы)
Введение….….
Глава I. История освещения….….
1.1.Масленные и керосиновые светильники….
1.2. Использование газа при освещении….1. 3. Изобретение и развитие электрического освещения….РазвернутьСвернуть
1.4. Галогенные лампы….
Глава II. Освещение в интерьере….…
2.1. Освещение в интерьере. Основные виды и типы освещения.
2.2. Естественное освещение…
2. 3.Искусственное освещение….
2. 4. Композиционно – стилистическое единство дизайна
интерьера.
2. 5. Освещение как объект комплексного эргономического
анализа…
2.6. Характеристики освещения….
2.7. Критерии освещения….
2.8. Особенности монтажа осветительных элементов в
подвесных потолках….
2.9. Световой режим в учебных заведениях…
Глава III. планы-конспекты занятий по проектированию освещения интерьера….
3.1.План-конспект урока "Свет. Источники света.
Распространение света"….
3.2.План-конспект урока "Проектирование освещенности учеб-ной аудитории"….
Заключение….….
Список использованной литературы….
Приложение….….
-
ВКР:
46 страниц(ы)
1. Татар телендә антонимнар һәм аксюмороннар
1.1. Антонимнар турында гомуми мәгълүмат 10
1.2. Антонимнарның төрләре 151.3. Антонимнарның күпмәгънәле сүзләр, омонимнар һәм синонимнар белән бәйләнеше 25РазвернутьСвернуть
1.4. Антонимнарның стилистик мөмкинлеге 26
1.5. Оксюморон 30
2. Урта гомуми белем бирү мәктәпләрендә антонимнарны өйрәнү методикасы һәм күнегү үрнәкләре
2.1. Антонимнарны өйрәнү методикасы һәм алымнары 36
2.2. Антонимнарны өйрәнү өчен күнегүләр һәм биремнәр 38
Йомгак 44
Файдаланылган әдәбият исемлеге 47
-
Дипломная работа:
Обучение технике ведения мяча мальчиков 7-8 лет в секции по футболу
39 страниц(ы)
ВВЕДЕНИЕ 3
ГЛАВА I. ТЕОРЕТИЧЕСКИЙ АНАЛИЗ СИСТЕМЫ ТЕХНИЧЕСКОЙ ПОДГОТОВКИ ФУТБОЛИСТОВ НА НАЧАЛЬНОМ ЭТАПЕ ОБУЧЕНИЯ 61.1. Характеристика начальных технических элементов игры в футбол мальчиков 7 - 8 лет 6РазвернутьСвернуть
1.2. Анатомо-физиологические особенности детей 7 - 8 лет 10
1.3. Методические особенности обучения технике ведения мяча мальчиков 7-8 лет в секции по футболу 12
ГЛАВА II. ОРГАНИЗАЦИЯ И МЕТОДЫ ИССЛЕДОВАНИЯ 20
2.1. Организация исследования 20
2.2. Методы исследования 20
ГЛАВА III. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЯ 23
3.1. Комплекс упражнений, направленный на обучение техники ведения мяча у мальчиков 7-8 лет, занимающихся в секции по футболу 23
3.2. Результаты исследования 26
3.3. Обсуждение результатов исследования 29
ВЫВОДЫ 34
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 36 -
Дипломная работа:
Правовое обеспечение механизма цензуры в сети интернет
79 страниц(ы)
ВВЕДЕНИЕ 3
ГЛАВА 1. ЦЕНЗУРА В СОВРЕМЕННЫХ СРЕДСТВАХ МАССОВОЙ ИНФОРМАЦИИ 6
1.1 Цензура как социокультурный феномен 61.2 Экономические и правовые условия деятельности СМИ в современной России 12РазвернутьСвернуть
1.3 Социологическое исследование о необходимости цензуры в СМИ 18
ГЛАВА 2. ПРАВОВАЯ РЕГЛАМЕНТАЦИЯ ЦЕНЗУРЫ В СЕТИ ИНТЕРНЕТ 21
2.1 Сделки в сети Интернет 21
2.2 Правовая охрана авторских и смежных прав в российском сегменте сети Интернет 25
2.3 Договоры ВОИС по авторскому праву и по исполнениям и фонограммам - отправная точка формирования международного законодательства об ИС в сети Интернет 29
ГЛАВА 3. НАПРАВЛЕНИЕ РАЗВИТИЯ ИНСТИТУТА ЦЕНЗУРЫ В СМИ 37
3.1 Информационные инструменты сети Интернет 37
3.2 Рекомендации по решению проблем гражданско-правового регулирования сети Интернет 49
ЗАКЛЮЧЕНИЕ 65
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ И ЛИТЕРАТУРЫ 67
-
Дипломная работа:
Автоматизация рабочего места (АРМ) менеджера
132 страниц(ы)
Введение
1 Менеджмент в сфере рекламного дела 8 1.1 Основа менеджмента 8
1.2 Менеджмент в рекламном агентстве 101.2 .1 Особенности современного рекламного процесса 18РазвернутьСвернуть
1.2.2 Процесс разработки рекламной программы 23 1.3 Менеджер, его функции и обязанности 26
1.4 Роль менеджера в ООО «РАСТУ» 30
1.5 Понятие автоматизации и АРМ менеджера 31
2 Диагностика деятельности ООО «РАСТУ» 34
2.1Описание предметной области 34
2.1.1Общие сведения о предприятии 34
2.1.2 Организационная структура 35
2.1.3 Должностные обязанности 35
2.1.4 Основные бизнес-правила 37
2.1.5 Налогообложение 38
2.1.6 Ассортимент продукции (услуг) 38
2.1.7 Описание существующей ИС 39
2.1.8 Модели функционирования предметной области 40
2.1.9 Информационные потоки и документооборот в ООО «РАСТУ» 46
3 Разработка ИС «Рекламное агентство» 49
3.1 Цели и функции создания ИС 49
3.1.1 Постановка задач проектирования ИС 49
3.1.2 Функции ИС 49
3.1.3 Цели создания ИС 50
3.1.4 Требования к техническому обеспечению 50
3.1.5 Требования к програмному обеспечению 51
3.2 Моделирование данных 51
3.3 Планируемые показатели эффективности 52
4 Оценка экономической эффективности 53
4.1 Понятие экономической эффективности 53
4.2 Расчет экономической эффективности 53
Заключение 57
Список использованных источников 58 Приложение А Задание на дипломное проектирование 60
Приложение Б Техническое задание на разработку программного комплекса «Рекламное агентство» 63
Приложение В Технический проект на разработку информационной системы 70
Приложение Г Руководство оператора 82
Приложение Д Листинг программы 94
-
Дипломная работа:
Образ рассказчика в современной дневниковой прозе: языковой аспект
120 страниц(ы)
Введение…3 Глава I. Образ рассказчика как организующее начало языковой композиции целого текста….
§ 1. Образ рассказчика в аспекте стилистики текста: сущность категории, способы выражения, соотношение с образом автора….§ 2. Языковое выражение адресованности в дискурсе рассказчика … Выводы по первой главе….РазвернутьСвернуть
Глава II. Языковая структура образа рассказчика в современной дневниковой прозе….
§ 1. Языковое выражение адресованности в дискурсе рассказчика в дневниковой прозе С. Есина и В. Гусева… 36
§ 2. Языковая структура образа рассказчика в дневниковой прозе С. Есина…. 53
§ 3. Языковая структура образа рассказчика в дневниках В. Гусева… 78
Выводы по второй главе….
Заключение….
Список использованной литературы….
Источники
Приложение
-
ВКР:
Организация мониторинга знаний по информатике учащихся средней школы
73 страниц(ы)
ВВЕДЕНИЕ 3
Глава 1. Теоретические аспекты организации контроля знаний учащихся как важнейшего фактора обучения 71.1. Формы и методы организации мониторинга качества знаний учащихся при подготовке к ГИА 7РазвернутьСвернуть
1.2. Методология и технология построения тестовой системы контроля . 11
1.3. Понятие и методика тестового контроля. Технология разработки тестовых заданий 14
1.4. Анализ эффективности различных типов тестовых заданий 23
1.5. Переход на компьютерное тестирование при сдаче ОГЭ в 9 классе 26
Выводы по I главе 33
Глава 2. Организация мониторинга знаний учащихся 9 класса в тестовой системе MytestX 34
2.1 Характеристика структуры тестовой системы и её основных элементов 34
2.2 Результаты мониторинга образовательных достижений эксперимента учащихся. Апробации тестовой системы контроля 37
Выводы по II главе 41
ЗАКЛЮЧЕНИЕ 42
ЛИТЕРАТУРА 44
ПРИЛОЖЕНИЕ 46
-
Дипломная работа:
61 страниц(ы)
ВВЕДЕНИЕ….….3
ГЛАВА I. ОСОБЕННОСТИ ЯЗЫКА СРЕДСТВ МАССОВОЙ ИНФОРМАЦИИ….7
1.1 Понятие «Язык СМИ»….7
1.2 Особенности языка англоязычных газет….13Выводы по первой главе….25РазвернутьСвернуть
ГЛАВА II. ЛЕКСИЧЕСКИЕ ОСОБЕННОСТИ СОВРЕМЕННОЙ АНГЛОЯЗЫЧНОЙ ПРЕССЫ….26
2.1 Газеты англоязычных стран. Особенности качественных и популярных газет….26
2.2 Особенности лексики качественного издания “The Independent”….31
2.3 Специфика языка популярной газеты “The Sun”….36
Выводы по второй главе….44
ГЛАВА III. ПРИМЕНЕНИЕ ГАЗЕТНЫХ ИЗДАНИЙ НА УРОКАХ АНГЛИЙСКОГО ЯЗЫКА…46
3.1Этапы работы с газетным текстом на уроке английского языка….46
3.2 Применение разработки плана урока…50
Выводы по третьей главе….54
ЗАКЛЮЧЕНИЕ….55
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ….58