Автор: kjuby
Содержание
Задание 1.
Литье в болванках для дальнейшей обработки поступает из двух цехов: 70% из первого цеха и 30% из второго цеха. При этом материал 1-го цеха имеет 10% брака, а материал 2-го цеха - 20% брака. Найти вероятность того, что одна, взятая наудачу болванка не имеет дефектов.
Задание 2.
В турнире встречаются 10 шахматистов, имеющие одинаковые шансы на любой исход в каждой встрече (только одной для каждых двух участников). Найти вероятность того, что какой-либо один из участников проведет все встречи с выигрышем.
Задание 3.
Вероятность появления события A в отдельном испытании равна 0.75. Какова вероятность того, что при восьмикратном повторении испытания это событие появится более 6 раз?
Задание 4.
Для определения средней урожайности поля площадью 1800 га взято на выборку по 1 м2 с каждого гектара. Известно, что по каждому гектару поля дисперсия не превышает 6. Оценить вероятность того, что отклонение средней выборочной урожайности отличается от средней урожайности по всему полю не более чем на 0.25 ц.
Задание 5.
Из партии 4000 деталей на выборку проверены 500. При этом оказалось 3% нестандартных. Определить вероятность того, что доля нестандартных деталей во всей партии отличается от их доли в выборке менее, чем на 1 %.
Задание 6.
Три товарища договорились встретиться. Первый из них никогда не опаздывает, но предупредил, что сможет прийти на встречу с вероятностью 0.9. Второй опоздает с вероятностью 0.2, а третий обычно опаздывает с вероятностью 0.4. Какова вероятность того, что к назначенному сроку (без опоздания) встретятся хотя бы двое из троих друзей?
Задание 7.
Вероятность появления события А в каждом из 12 повторных независимых испытаний Р(А)=р=0.75. Определите среднее значение и дисперсию случайной величины числа появлений события А в 12 независимых повторных испытаниях.
Задание 8
При каком числе n независимых испытаний вероятность выполнения неравенства .,
где m – число появлений события А в этих n испытаниях, превысит 0.9, если вероятность появления события А в отдельном испытании р=0.7?
Выдержка из текста работы
Задание 6.
Три товарища договорились встретиться. Первый из них никогда не опаздывает, но предупредил, что сможет прийти на встречу с вероятностью 0.9. Второй опоздает с вероятностью 0.2, а третий обычно опаздывает с вероятностью 0.4. Какова вероятность того, что к назначенному сроку (без опоздания) встретятся хотя бы двое из троих друзей?
Решение.
Выразим через Аi – приход i-го товарища вовремя, а через ¯Аi – опоздание i-го товарища.
Затем вычислим и просуммируем вероятность событий А1А2¯А3, А1А2А3, А1¯А2А3, ¯А1А2А3.
Р = 0,9*0,8*0,4+0,9*0,8*0,6+),9*0,2*0,6+0,1*0,8*0,6 = 0,876.
| Тема: | «Высшая математика, вариант 1» | |
| Раздел: | Математика | |
| Тип: | Контрольная работа | |
| Страниц: | 3 | |
| Стоимость текста работы: | 100 руб. |
Напишем авторскую работу по вашему заданию.
- Необходимый уровень антиплагиата
- Прямое общение с исполнителем вашей работы
- Бесплатные доработки и консультации
- Минимальные сроки выполнения
- Пишем сами, без нейросетей
Мы уже помогли 24535 студентам
Средний балл наших работ
- 4.89 из 5
Предыдущая работа
Безопасность жизнедеятельности (код БЖ), вараинт 6Следующая работа
Высшая математика, вариант 1 (18 заданий по 5 тестовых вопроса)