У нас можно недорого заказать курсовую, контрольную, реферат или диплом

«Высшая математика 5 вариант» - Контрольная работа
- 32 страниц(ы)
Содержание
Введение
Выдержка из текста работы
Заключение
Примечания

Автор: navip
Содержание
Элементы векторной алгебры и аналитической геометрии
Элементы линейной алгебры
Введение в математический анализ
Производная и её приложения
Приложения дифференциального исчисления
Дифференциальное исчисление функций нескольких переменных
Неопределённый и определённый интегралы
Теория вероятностей и математическая статистика
Введение
5 Даны векторы: в некотором базисе. Показать,что векторы а;в;с образуют базис трехмерного пространства и найти координатывектора d в этом базисе. 3
15 Задание №15: Даны четыре вектора в некотором базисе. Показать, чтовекторы образуют базис, и найти координаты вектора b в этом базисе. 5
25Даны вершины треугольника ABC: Найти: 01 :: уравнения сторон AB и AC; 02 :: уравнение высоты CH; 03 :: уравнение и длину медианы AM; 04 :: угол BAC; 05 :: уравнение прямой, проходящей через вершину C, параллельно стороне AB; 06 :: точку пересечения медианы AM и высоты CH; 07 :: площадь треугольника ABC; 08 :: сделать чертеж. 7
35. Даны координаты вершин пирамиды . Найти: 1) длину ребра А1А2; 2) угол между ребрами и 3) угол между ребром и гранью 4) площадь грани 5) объем пирамиды; 6) уравнение прямой 7) уравнение плоскости 8) уравнение высоты, опущенной из вершины на грань . Сделать чертеж. 9
45/ Cставить уравнение линии для каждой точки которой отношение ee расстояний до точки F(2;0) и до прямой x=0,5 равно 2. 11
55. Найти матрицу обратную матрице 12
65. Дана система линейных уравнений Доказать её совместимость и решить двумя способами: 1) методом Гаусса; 2) средствами матричного исчисления. 13
75 Даны 2 преобразования. Средствами матричного исчисления найти преобразование, выражающее Даны два линейных преобразования. Средствами матричного исчисления найти преобразование, выражающее через 15
85 Найти пределы 16
95 Найти пределы 17
105. Задана функция y=f(x). Найти точки разрыва функции, если они существуют. Сделать чертеж. 18
Выдержка из текста работы
5 Даны векторы: в некотором базисе. Показать,что векторы а;в;с образуют базис трехмерного пространства и найти координатывектора d в этом базисе. 3
15 Задание №15: Даны четыре вектора в некотором базисе. Показать, чтовекторы образуют базис, и найти координаты вектора b в этом базисе. 5
25Даны вершины треугольника ABC: Найти: 01 :: уравнения сторон AB и AC; 02 :: уравнение высоты CH; 03 :: уравнение и длину медианы AM; 04 :: угол BAC; 05 :: уравнение прямой, проходящей через вершину C, параллельно стороне AB; 06 :: точку пересечения медианы AM и высоты CH; 07 :: площадь треугольника ABC; 08 :: сделать чертеж. 7
35. Даны координаты вершин пирамиды . Найти: 1) длину ребра А1А2; 2) угол между ребрами и 3) угол между ребром и гранью 4) площадь грани 5) объем пирамиды; 6) уравнение прямой 7) уравнение плоскости 8) уравнение высоты, опущенной из вершины на грань . Сделать чертеж. 9
45/ Cставить уравнение линии для каждой точки которой отношение ee расстояний до точки F(2;0) и до прямой x=0,5 равно 2. 11
55. Найти матрицу обратную матрице 12
65. Дана система линейных уравнений Доказать её совместимость и решить двумя способами: 1) методом Гаусса; 2) средствами матричного исчисления. 13
75 Даны 2 преобразования. Средствами матричного исчисления найти преобразование, выражающее Даны два линейных преобразования. Средствами матричного исчисления найти преобразование, выражающее через 15
85 Найти пределы 16
95 Найти пределы 17
105. Задана функция y=f(x). Найти точки разрыва функции, если они существуют. Сделать чертеж. 18
115 Найти производные за данных функций. 21
125 Найти наибольшее и наименьшее значения функции y=f(x) на отрезке [a,b]. 21
135 Исследовать методами дифференциального исчисления функцию y=f(x) и, используя результаты исследования, построить её график. 21
145 Исследовать методами дифференциального исчисления функцию y=f(x) и, используя результаты исследования, построить её график. 21
155 Дифференциальное исчисление функции нескольких переменных. 23
165 Даны функция и две точки и . Требуется: 1) вычислить значение функции в точке 2) вычислить приближенное значение функции в точке , исходя из значения функции в точке и заменив приращение функции при переходе от точки к точке дифференциалом; 3) оценить в процентах относительную погрешность, получающуюся при замене приращения функции её дифференциалом; 4) составить уравнение касательной плоскости к поверхности в точке . 24
175 Найти наименьшее и наибольшее значения функции в замкнутой области , заданной системой неравенств. Сделать чертеж. 25
185 Даны функция , точка и вектор . Найти: 1) gradz в точке ; 2) производную в точке по направлению вектора . 26
195 Экспериментально получены пять значений искомой функции при пяти начениях аргумента, которые записаны в таблице Методом наименьших квадратов найти функцию , выражающую приближённо (аппроксимирующую) функцию . Сделать чертёж, на котором в декартовой системе координат построить экспериментальные точки и график аппроксиимирующей функции . 27
205. Найти полный дифференциал z=f(x,y) 28
215. Найти неопределенные интегралы. В двух первых примерах (п.а и б) результаты проверить дифференцированием. 30
225. Найти неопределенные интегралы. В двух первых примерах (п.а и б) результаты проверить дифференцированием. 31
235. Вычислить значение определенного интеграла по формуле Ньютона-Лейбница. 31
Заключение
25Даны вершины треугольника ABC: Найти: 01 :: уравнения сторон AB и AC; 02 :: уравнение высоты CH; 03 :: уравнение и длину медианы AM; 04 :: угол BAC; 05 :: уравнение прямой, проходящей через вершину C, параллельно стороне AB; 06 :: точку пересечения медианы AM и высоты CH; 07 :: площадь треугольника ABC; 08 :: сделать чертеж. 7
35. Даны координаты вершин пирамиды . Найти: 1) длину ребра А1А2; 2) угол между ребрами и 3) угол между ребром и гранью 4) площадь грани 5) объем пирамиды; 6) уравнение прямой 7) уравнение плоскости 8) уравнение высоты, опущенной из вершины на грань . Сделать чертеж. 9
45/ Cставить уравнение линии для каждой точки которой отношение ee расстояний до точки F(2;0) и до прямой x=0,5 равно 2. 11
55. Найти матрицу обратную матрице 12
65. Дана система линейных уравнений Доказать её совместимость и решить двумя способами: 1) методом Гаусса; 2) средствами матричного исчисления. 13
75 Даны 2 преобразования. Средствами матричного исчисления найти преобразование, выражающее Даны два линейных преобразования. Средствами матричного исчисления найти преобразование, выражающее через 15
85 Найти пределы 16
95 Найти пределы 17
105. Задана функция y=f(x). Найти точки разрыва функции, если они существуют. Сделать чертеж. 18
115 Найти производные за данных функций. 21
125 Найти наибольшее и наименьшее значения функции y=f(x) на отрезке [a,b]. 21
135 Исследовать методами дифференциального исчисления функцию y=f(x) и, используя результаты исследования, построить её график. 21
145 Исследовать методами дифференциального исчисления функцию y=f(x) и, используя результаты исследования, построить её график. 21
155 Дифференциальное исчисление функции нескольких переменных. 23
165 Даны функция и две точки и . Требуется: 1) вычислить значение функции в точке 2) вычислить приближенное значение функции в точке , исходя из значения функции в точке и заменив приращение функции при переходе от точки к точке дифференциалом; 3) оценить в процентах относительную погрешность, получающуюся при замене приращения функции её дифференциалом; 4) составить уравнение касательной плоскости к поверхности в точке . 24
175 Найти наименьшее и наибольшее значения функции в замкнутой области , заданной системой неравенств. Сделать чертеж. 25
185 Даны функция , точка и вектор . Найти: 1) gradz в точке ; 2) производную в точке по направлению вектора . 26
195 Экспериментально получены пять значений искомой функции при пяти начениях аргумента, которые записаны в таблице Методом наименьших квадратов найти функцию , выражающую приближённо (аппроксимирующую) функцию . Сделать чертёж, на котором в декартовой системе координат построить экспериментальные точки и график аппроксиимирующей функции . 27
205. Найти полный дифференциал z=f(x,y) 28
215. Найти неопределенные интегралы. В двух первых примерах (п.а и б) результаты проверить дифференцированием. 30
225. Найти неопределенные интегралы. В двух первых примерах (п.а и б) результаты проверить дифференцированием. 31
235. Вычислить значение определенного интеграла по формуле Ньютона-Лейбница. 31
Примечания
В работе также есть подробное решение задач Форматы: Word
Тема: | «Высшая математика 5 вариант» | |
Раздел: | Математика | |
Тип: | Контрольная работа | |
Страниц: | 32 | |
Цена: | 1450 руб. |
Закажите авторскую работу по вашему заданию.
- Цены ниже рыночных
- Удобный личный кабинет
- Необходимый уровень антиплагиата
- Прямое общение с исполнителем вашей работы
- Бесплатные доработки и консультации
- Минимальные сроки выполнения
Мы уже помогли 24535 студентам
Средний балл наших работ
- 4.89 из 5
написания вашей работы
У нас можно заказать
(Цены могут варьироваться от сложности и объема задания)
682 автора
помогают студентам
42 задания
за последние сутки
10 минут
время отклика
-
Дипломная работа:
Математика для специальности «генетика»
131 страниц(ы)
Введение…4
ЧАСТЬ I
Элементы теории вероятностей и математической статистики Глава 1. Событие и вероятность….5§ 1.1. Основные понятия. Определение вероятности….…5РазвернутьСвернуть
§ 1.2. Свойства вероятности….10
§ 1.3. Приложение в генетике…14
Глава 2. Дискретные и непрерывные случайные величины ….15
§ 2.1. Случайные величины…15
§ 2.2. Математическое ожидание дискретной случайной величины…16
§ 2.3. Закон больших чисел…24
Глава 3. Элементы математической статистики….25
§ 3.1. Элементы математической статистики ….25
§ 3.2. Оценки параметра генеральной совокупности….30
§ 3.3. Доверительные интервалы для параметров нормального распределения….32
§ 3.4. Проверка статистических гипотез…38
§ 3.5. Линейная корреляция….39
Глава 4. Статистическая проверка статистических гипотез….41
§ 4.1. Основные сведения…41
§ 4.2. Сравнение двух средних нормальных генеральных совокупностей, дисперсии которых известны….44
§ 4.3. Сравнение двух средних произвольно распределенных генеральных совокупностей….….46
§ 4.4. Другие характеристики вариационного ряда….47
Глава 5. Методы расчета свободных характеристик выборки….51
§ 5.1. Метод произведений вычисления выборочной средней и дисперсии….51
§ 5.2. Метод сумм вычисления выборочной средней и дисперсии….52
ЧАСТЬ II
МАТЕМАТИЧЕСКИЙ АНАЛИЗ
Глава 6. Дифференциальное и интегральное исчисление функций нескольких переменных…53
§ 6.1. Функции нескольких переменных….53
§ 6.2. Частные производные. Полный дифференциал …55
§ 6.3. Экстремумы функций двух переменных ….58
§ 6.4. Двойные интегралы….59
§ 6.5. Тройные интегралы….65
Глава 7. Комплексные числа….67
§ 7.1. Определение комплексных чисел и основные операции над ними.…. ….….67
§ 7.2. Обзор элементарных функций….…74
Глава 8 Дифференциальные уравнения….78
§ 8.1. Дифференциальные уравнения первого порядка….78
§ 8.2. Уравнения высших порядков….…86
§ 8.3. Линейные уравнения высших порядков….88 -
Дипломная работа:
Математическое обеспечение курса « высшая математика» для студентов 1 курса
43 страниц(ы)
Введение 14
Раздел I. Элементы аналитической геометрии и высшей алгебры
Глава 1. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ 14§1. Метод координат на плоскости 14РазвернутьСвернуть
1.1. Декартовы прямоуголные коориднаты 14
1.2. Полярные координаты 15
1.3. Основные задачи, решаемые методом координат 17
1.4. Уравнение линии на плоскости 18
§2. Прямая линия 19
2.1. Уравнение прямой с угловым коэффициентом 19
2.2. Общее уравнение прямой 20
2.3. Уравнение прямой с данным угловым коэффициентом,
проходящей через данную точку 21
2.4. Уравнение прямой в отрезках 22
2.5. Угол между двумя прямыми 23
2.6. Взаимное расположение двух прямых на плоскости 24
2.7. Расстояние от точки до прямой 27
§3. Основные задачи на прямую 28
3.1. Уравнение произвольной прямой, проходящей через точку 28
3.2. Уравнение прямой, проходящей через две данные (различные) точки 28
§4. Кривые второго порядка 29
4.1. Уравнение окружности 31
4.2. Каноническое уравнение эллипса 31
4.3. Каноническое уравнение гиперболы 34
4.4. Каноническое уравнение параболы 36
Глава 2. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ 39
§5. Плоскость 39
5.1. Геометрическое истолкование уравнения между координатами в пространстве 39
5.2. Уравнение плоскости, проходящей через данную точку перпендикулярно к данному вектору 39
5.3.Общее уравнение плоскости 40
5.4. Неполные уравнения плоскости 41
5.5. Уравнение плоскости в отрезках 42
5.6. Угол между плоскостями. Условия параллельности и перпендикулярности плоскостей 42
§6. Прямая в пространстве 43
6.1. Геометрическое истолкование двух уравнений между координатами в пространстве 43
6.2. Обще уравнения прямой 44
6.3. Канонические уравнения прямой 45
6.4. Параметрические уравнения прямой в пространстве 45
6.5. Угол между прямыми 45
6.6. Условие параллельности и перпендикулярности прямой и плоскости 47
§7. Основные задачи на плоскость и прямую в пространстве 48
7.1. Уравнение произвольной плоскости, проходящей через точку 48
7.2. Уравнение произвольной прямой, проходящей через точку 49
7.3. Уравнение прямой, проходящей через различные данные точки 49
7.4. Уравнение плоскости, проходящей через три точки, не лежащие на одной прямой 49
§8. Изучение поверхностей второго порядка по их каноническим уравнениям 50
8.1. Эллипсоид и гиперболоиды 50
8.2. Параболоиды 53
8.3. Цилиндры второго порядка 54
8.4. Конус второго порядка 55
Глава 3. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ 57
§9. Матрица и действия над ними 58
9.1. Понятие о матрице 58
9.2. Сложение матриц 58
9.3. Вычитание матриц 58
9.4. Умножение матрицы на число 59
9.5. Умножение матриц
§10. Определители
10.1. Определители второго порядка
10.2. Определители третьего порядка
10.3. Понятие определителя n-го порядка
10.4. Обратная матрица
§11. Системы линейных уравнений
11.1. Матричная запись и матричное решение системы уравнений первой степени
11.2. Формулы Крамера
11.3. Линейная однородная система n уравнений с n неизвестными
Глава 3. ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ
§12. Понятие вектора и линейные операции над векторами
12.1. Понятие вектора
12.2.Линейные операции над векторами
12.3. Понятие линейной зависимости векторов
12.4. Линейная зависимость векторов на плоскости
12.5. Линейная зависимость векторов в пространстве
12.6. Базис на плоскости и в пространстве
12.7. Проекция вектора на ось и ее свойства
12.8. Декартова прямоугольная система координат в пространстве
12.9. Цилиндрические и сферические координаты
§13. Нелинейные операции над векторами
13.1. Скалярное произведение двух векторов
13.2. Скалярное произведение векторов в координатной форме
13.3. Направляющие косинусы вектора
13.4. Векторное произведение двух векторов
13.5. Смешанное произведение трех векторов
§14. Выражение векторного и смешанного произведений векторов через координаты сомножителей
14.1. Выражение векторного произведения через координаты перемножаемых векторов
14.2. Выражение смешанного произведения через координаты перемножаемых векторов
Заключение
Литература
-
Дипломная работа:
Методическое обеспечение курса «методика обучения математике»
134 страниц(ы)
Введение…. 3
Глава I. Теоретические основы общей методики обучения математике….6
1.1 Дидактические основы обучения математике…. 61.2 Методические аспекты обучения математике….…. 35РазвернутьСвернуть
Глава II. Вопросы частной методики обучения математике….54
2.1 Методические рекомендации по изучению алгебраического материала….54
2.2 Методические рекомендации по изучению геометрического материала ….79
Заключение… 130
Список литературы…. 132
-
Реферат:
Предмет и метод математики_Уравнения_Классификация функций.
18 страниц(ы)
Введение 3
1 Предмет и метод математики 4
2 Уравнения: понятия, классификация 6
2.1 Линейные уравнения 6
2.2 Системы линейных уравнений 72.3 Квадратные уравнения и уравнения, сводящиеся к ним 9РазвернутьСвернуть
2.4 Возвратные уравнения 11
3 Функция и её свойства, виды функций 13
Заключение 17
Список использованной литературы 18
-
Реферат:
Предмет и метод математики_Уравнения_Классификация функций
18 страниц(ы)
Введение 3
1 Предмет и метод математики 4
2 Уравнения: понятия, классификация 6
2.1 Линейные уравнения 6
2.2 Системы линейных уравнений 72.3 Квадратные уравнения и уравнения, сводящиеся к ним 9РазвернутьСвернуть
2.4 Возвратные уравнения 11
3 Функция и её свойства, виды функций 13
Заключение 17
Список использованной литературы 18
-
Дипломная работа:
Методическое обеспечение курса «история математики» для студентов специальности «математика»
181 страниц(ы)
Введение ….…. 5
Глава 1. Основные этапы развития математики….….….7
Глава 2. Математика Древнего мира….….102.1. Истоки математических знаний….….10РазвернутьСвернуть
2.2. Математика в до-греческих цивилизациях…17
2.2.1. Древний Египет….….17
2.2.2. Вавилония…23
2.3. Древняя Греция….…26
2.3.1. Начальный период….….27
2.3.2. Пифагорейская школа….…29
2.3.3. V - III века до н. э…32
2.3.4. Проблема бесконечности…36
2.3.5. Упадок античной науки….37
2.4. Математика эпохи эллинизма….38
2.4.1. Особенности эллинистической культуры и науки….….38
2.4.2. Начала Евклида….…40
2.4.3. Архимед…43
2.4.4. Аполлоний Пергский и его труд о конических сечениях.45
2.5. Математика в древнем и средневековом Китае….….48
2.5.1. Математика в девяти книгах….49
2.5.2. Десятикнижье….…53
2.6. Математика в древней и средневековой Индии….….55
2.6.1. Древнейший период….….….….55
2.6.2. Нумерация….….….59
2.6.3. Средневековая Индия….….60
2.7. Математика первых веков новой эры….…62
2.7.1. Герон Александрийский….….….…62
2.7.2. Клавдий Птолемей….…63
2.7.3. Диофант….….….64
Вопросы….….65
Глава 3. Западная Европа. Начало….…66
3.1. Фибоначи….….69
3.2. Схоласты….….…71
3.3. Региомонтан….…72
3.4. Уравнение третьей степени….75
3.5. Виет…78
3.6. Изобретение логарифмов….80
Вопросы….….83
Глава 4. Семнадцатое столетие….…83
4.1. Кеплер. Галилео. Кавальери…85
4.2. Декарт….….87
4.3. Валис и Гюйгенс….…89
4.4. Ферма и Паскаль….…92
4.5. Ньютон и Лейбниц….….94
Вопросы….101
Глава 5. Восемнадцатое столетие….…101
5.1. Династия Бернулли…102
5.2. Эйлер….…105
5.3. Даламбер. Теория вероятностей….…109
5.4. Маклорен….…112
5.5. Лагранж….….114
5.6. Лаплас….118
5.7. Окончание века….….120
Вопросы….…122
Глава 6. Девятнадцатое столетие….…122
6.1. Гаусс и Лежандр….123
6.2. Политихническая школа…129
6.3. Монж и его ученики….….131
6.4. Пуассон и Фурье….….134
6.5. Коши…136
6.6. Галуа….….139
6.7. Абель….….141
6.8. Якоби….….143
6.9. Гамильтон…145
6.10. Дирихле….….146
6.11. Риман….148
6.12. Вейерштрасс….…151
6.13. Понселе, Штейнер, Штаудт….…152
6.14. Мёбиус, Плюкер, Шаль…156
6.15. Бойяи….….158
6.16. Кэли, Сильвестр, Салмон….161
6.17. Лиувилль, Эрмит, Дарбу….164
6.18. Пуанкаре….….166
6.19. Италия…168
6.20. Программа Гильберта….…170
Вопросы….173
Глава 7. Основные достижения последних столетий…173
7.1. Новые направления…173
7.2. Математическая логика и основания математики….….175
7.3. Теория чисел и алгебра….176
7.4. Математическая физика и математический анализ…176
7.5. Топология и геометрия….…177
7.6. Компьютерная и дискретная математика….…177
Вопросы….…178
Заключение….179
Литература….…180