СтудСфера.Ру - помогаем студентам в учёбе

У нас можно недорого заказать курсовую, контрольную, реферат или диплом

Тестирование по курсу «Макро микроэкономика», вариант 2 - Тест №32204

«Тестирование по курсу «Макро микроэкономика», вариант 2» - Тест

  • 2 страниц(ы)

Содержание

Выдержка из текста работы

фото автора

Автор: тантал

Содержание

1. Деятельность фирмы-монополиста характеризуется следующими параметрами. Предельная выручка - 9 руб., общая выручка 44000 руб., выпуск 4000 ед., предельные издержки 9 руб., общие средние издержки 10,9 руб., средние переменные издержки 10 руб. Какую рекомендацию Вы дали бы фирме максимизирующей прибыль:

а) повысить цену;

б) снизить цену;

в) не изменять цену;

г) увеличить выпуск;

д) верно б) и г).

2. Общая выручка сокращается при увеличении цены, если спрос на товар

а) эластичен

б) неэластичен

в) коэффициент эластичности равен 1

г) предложение товара эластично

3. Минимум средних издержек достигается тогда, когда предельные издержки

а) больше, чем средние издержки

б) меньше, чем средние издержки

в) равны средним издержкам

г) минимальны

4. Сдвиг кривой совокупного спроса вправо является следствием:

а) повышения общего уровня цен;

б) сокращения государственных закупок;

в) повышения курса национальной валюты;

г) снижения курса национальной валюты;

д) повышения ставки процента.

5. Номинальный ВВП вырос на 18%, , а скорость обращения денег относительно дохода выросла на 9%. Используя уравнение обмена, определите, как изменилась денежная масса.

а) выросла на 2%;

б) сократилась на 2%;

и) выросла на 0,5%;

г) выросла на 8%;

д) сократилась на 8%;

Выдержка из текста работы

3. Минимум средних издержек достигается тогда, когда предельные издержки

а) больше, чем средние издержки

б) меньше, чем средние издержки

в) равны средним издержкам

г) минимальны

Ответ: в.

Как видно на графике минимум средних издержек (АТС) достигается при равенстве предельным.

Покупка готовой работы
Тема: «Тестирование по курсу «Макро микроэкономика», вариант 2»
Раздел: Экономика
Тип: Тест
Страниц: 2
Цена: 150 руб.
Нужна похожая работа?
Закажите авторскую работу по вашему заданию.
  • Цены ниже рыночных
  • Удобный личный кабинет
  • Необходимый уровень антиплагиата
  • Прямое общение с исполнителем вашей работы
  • Бесплатные доработки и консультации
  • Минимальные сроки выполнения

Мы уже помогли 24535 студентам

Средний балл наших работ

  • 4.89 из 5
Узнайте стоимость
написания вашей работы

У нас можно заказать

(Цены могут варьироваться от сложности и объема задания)

Контрольная на заказ

Контрольная работа

от 100 руб.

срок: от 1 дня

Реферат на заказ

Реферат

от 700 руб.

срок: от 1 дня

Курсовая на заказ

Курсовая работа

от 1500 руб.

срок: от 3 дней

Дипломная на заказ

Дипломная работа

от 8000 руб.

срок: от 6 дней

Отчет по практике на заказ

Отчет по практике

от 1500 руб.

срок: от 3 дней

Решение задач на заказ

Решение задач

от 100 руб.

срок: от 1 дня

Лабораторная работа на заказ

Лабораторная работа

от 200 руб.

срок: от 1 дня

Доклад на заказ

Доклад

от 300 руб.

срок: от 1 дня

682 автора

помогают студентам

42 задания

за последние сутки

10 минут

время отклика

Похожие работы
  • Доклад:

    Методические указания по курсу «РИМСКОЕ ПРАВО

    5 страниц(ы) 

    Методические указания
    по курсу «РИМСКОЕ ПРАВО»
    для заочной формы обучения
    Специальность 030501 - Юриспруденция
  • Дипломная работа:

    Методическое обеспечение лекционных занятий по курсу «математические методы для экологов»

    89 страниц(ы) 

    Введение….….3
    Глава I. Ряды….….4
    § 1. Числовые ряды….….4
    §2.Функциональные ряды….…17
    Упражнения…28
    Глава II. Дифференциальные уравнения….31
    §2.1. Дифференциальные уравнения первого порядка, их частные случаи….31
    § 2.2. Линейные уравнения второго порядка….….45
    Упражнения…52
    Глава III. Событие и вероятность….54
    § 3.1. Основные понятия. Определение вероятности….54
    § 3.2. Случайные величины….67
    § 3.3. Математическое ожидание. Свойства математического ожидания….69
    § 3.4. Дисперсия дискретной случайной величины….71
    Упражнения…73
    Глава IV. Элементы математической статистики…75
    § 4.1. Генеральная совокупность и выборка….75
    § 4.2. Оценки параметров генеральной совокупности по ее выборке….80
    Упражнения….85
    Заключение…87
    Список литературы….88
  • Дипломная работа:

    Методическое обеспечение по курсу «математика» (задачник по математическому анализу) для направления «информационные системы и технологии»

    118 страниц(ы) 

    Оглавление 2
    Введение. 4
    Глава1. Дифференциальное исчисление функции одной переменной 6
    1.1. Основы дифференциального исчисления 6
    1.2. Производная сложной функции 9
    1.3. Логарифмическое дифференцирование 11
    1.4. Производная обратных функций 14
    1.5. Неявная функция и ее дифференцирование 15
    1.6. Дифференцирование параметрически заданных функций 17
    1.7. Дифференциал функции 20
    1.7.1. Понятие дифференциала функции 20
    1.7.2. Приближенное вычисление значения функции с помощью дифференциала 21
    1.8. Исследование функций при помощи производной 24
    1.8.1. Монотонность функции 24
    1.8.2. Экстремум функции. 26
    1.8.3. Наибольшее и наименьшее значение функции на отрезке 29
    1.8.4. Выпуклость и вогнутость, точки перегиба 30
    1.8.5. Асимптоты графика функции 32
    1.8.6. Схема исследования функции и построения графиков 34
    Глава 2. Первообразная функция и неопределенный интеграл 37
    2.1. Неопределенный интеграл 37
    2.1.1. Понятие неопределенного интеграла 37
    2.1.2 Простейшие свойства неопределенных интегралов 37
    2.1.3. Таблица основных интегралов 38
    2.2. Интегрирование при помощи метода замены переменной 41
    2.3. Интегрирование по частям. 44
    2.4. Интегрирование дробно-рациональных выражений. 54
    2.5. Интегрирование некоторых тригонометрических функций. 59
    2.6. Интегрирование некоторых иррациональных функций. 63
    2.7. Интегрирование биноминальных дифференциалов. 65
    2.8. Несколько примеров интегралов, не выражающихся через элементарные функции. 71
    Глава 3. Определенный интеграл и его приложение. 72
    3.1. Задачи, приводящие к понятию определенного интеграла 72
    3.1.1. Площадь криволинейной трапеции 72
    3.1.3. Масса линейного неоднородного стержня 73
    3.1.5. Работа переменной силы на прямолинейном участке пути 74
    3.2. Интегральная сумма. Определенный интеграл. 76
    3.3. Свойства определенного интеграла 78
    3.4. Вычисление определенного интеграла. Формула Ньютона-Лейбница 80
    3.5. Замена переменной в определенном интеграле 82
    3.6. Интегрирование по частям в определенном интеграле 85
    3.7. Несобственные интегралы 87
    3.8. Признаки сходимости несобственных интегралов. 95
    3.9. Геометрические приложения определенного интеграла 97
    3.9.1. Вычисление площади плоской фигуры 97
    3.9.2. Вычисление объема тела вращения 103
    3.9.3. Вычисление длины дуги 108
    3.10. Вычисление поверхности тел вращения 110
    3.11. Вычисление площади, ограниченной кривой, заданной полярным уравнением и двумя радиусами-векторами 111
    3.12. Площадь плоской фигуры, ограниченной кривой, уравнения которой заданы в параметрическом виде. 115
    Заключение 117
    Список использованной литературы 118
  • Дипломная работа:

    Методическое обеспечение по курсу «математика» (задачник по алгебре) для направления «информационные системы и технологии»

    91 страниц(ы) 

    Введение
    §1. Системы линейных алгебраических уравнений
    1. Матрицы и операции над ними. Элементарные преобразования матриц.
    2. Определитель матрицы. Миноры и алгебраические дополнения. Свойства определителей.
    3. Невырожденная и обратная матрица. Ранг матрицы.
    4. Системы линейных алгебраических уравнений. Теорема Кронекера-Капелли.
    5. Решение систем линейных алгебраических уравнений по формулам Крамера, матричным способом и методом Гаусса.
    6. Системы линейных однородных уравнений. Структура множества решений системы линейных уравнений. Фундаментальная система решений.
    §2. Элементы векторной алгебры
    1. Векторы. Линейные операции над векторами. Базис на плоскости и в пространстве. Координаты вектора. Действия над векторами, заданными своими координатами.
    2. Скалярное произведение векторов, его свойства, выражение скалярного произведения через координаты.
    3. Векторное и смешанное произведения векторов, их свойства, геометрический смысл, выражение векторного и смешанного произведений через их координаты.
    §3. Аналитическая геометрия
    1. Прямая линия на плоскости. Уравнение прямой по точке и нормальному вектору. Уравнение прямой по точке и направляющему вектору. Уравнение прямой по двум точкам. Уравнение прямой по точке и угловому коэффициенту. Уравнение прямой с угловым коэффициентом. Угол между двумя прямыми. Общее уравнение прямой. Расстояние от произвольной точки плоскости до прямой.
    2. Кривые второго порядка.
    3. Поверхность и ее уравнение. Виды уравнений плоскости.
    4. Виды уравнений прямой в пространстве.
    5. Прямая и плоскость в пространстве R3.
    6. Поверхности второго порядка.
    Заключение
    Список литературы
  • Дипломная работа:

    Методическое обеспечение по курсу «математика» (задачник по алгебре) для направления «информационные системы и технологии»

    91 страниц(ы) 


    Введение
    Глава 1. Системы линейных алгебраических уравнений
    1. Матрицы и операции над ними. Элементарные преобразования матриц.
    2. Определитель матрицы. Миноры и алгебраические дополнения. Свойства определителей.
    3. Невырожденная и обратная матрица. Ранг матрицы.
    4. Системы линейных алгебраических уравнений. Теорема Кронекера-Капелли.
    5. Решение систем линейных алгебраических уравнений по формулам Крамера, матричным способом и методом Гаусса.
    6. Системы линейных однородных уравнений. Структура множества решений системы линейных уравнений. Фундаментальная система решений.
    Глава 2. Элементы векторной алгебры
    1. Векторы. Линейные операции над векторами. Базис на плоскости и в пространстве. Координаты вектора. Действия над векторами, заданными своими координатами.
    2. Скалярное произведение векторов, его свойства, выражение скалярного произведения через координаты.
    3. Векторное и смешанное произведения векторов, их свойства, геометрический смысл, выражение векторного и смешанного произведений через их координаты.
    Глава 3. Аналитическая геометрия
    1. Прямая линия на плоскости. Уравнение прямой по точке и нормальному вектору. Уравнение прямой по точке и направляющему вектору. Уравнение прямой по двум точкам. Уравнение прямой по точке и угловому коэффициенту. Уравнение прямой с угловым коэффициентом. Угол между двумя прямыми. Общее уравнение прямой. Расстояние от произвольной точки плоскости до прямой.
    2. Кривые второго порядка.
    3. Поверхность и ее уравнение. Виды уравнений плоскости.
    4. Виды уравнений прямой в пространстве.
    5. Прямая и плоскость в пространстве R3.
    6. Поверхности второго порядка.
    Заключение
    Список литературы