
«Изучение процесса массоотдачи в вихревом контактном устройстве (ВКУ) на примере. Метод десорбции плохо растворимого газа кислорода из воды в воздух.» - Дипломная работа
- 11.11.2016
- 124
- 2649
Содержание
Введение
Заключение
Список литературы

Автор: Pingvin78
Содержание
ВВЕДЕНИЕ
1. АНАЛИТИЧЕСКАЯ ЧАСТЬ
2.1. Историческая справка о технологическом процессе 3
2.2. Обоснование и выбор технологии производства 6
2.3. Характеристика сырья, продуктов, вспомогательных материалов 7
2.4. Физико-химические основы процесса денитрации 10
2.5. Описание технологического процесса 13
2.6. Обоснование и выбор оборудования 15
2. РАСЧЕТНАЯ ЧАСТЬ 17
2.1. Расчет материального баланса 49
2.2. Технологические расчеты 56
2.3. Тепловой расчет 63
2.4. Механические расчеты 68
2.4.1. Расчет обечайки 68
2.4.2. Расчет эллиптического днища 70
3. АВТОМАТИЧЕСКОЕ РЕГУЛИРОВАНИЕ ПРОЦЕССА ДЕНИТРАЦИИ 72
ЗАКЛЮЧЕНИЕ 119
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 121
Введение
Азотная кислота по объему производства занимает среди других кислот второе место после серной кислоты. Основное количество товарной азотной кислоты расходуется в производстве азотнокислых солей (нитратов) и сложных минеральных удобрений. Концентрированная азотная кислота применяется в производстве взрывчатых веществ: тротила, гексагена, октогена, тетрила. Значительное количество концентрированной азотной кислоты применяется для получения нитропроизводных бензола, нафталина, антрацена и других соединений ароматического ряда, использующихся в качестве полупродуктов в производстве синтетических красителей, а также в фармацевтической промышленности.
Огромное количество азотной используется в производстве нитратов целлюлозы: коллоксилина и пироксилина.
В настоящее время развитие производств, применяющих смесь азотной и серных кислот в качестве нитрующего агента привело к получению огромных количеств отработанных кислотных смесей. Эти смеси с экономической точки зрения необходимо регенерировать и в необходимых расчетных концентрациях возвращать обратно в производственных цикл, тем самым удешевляя единицу себестоимости готовой продукции. Целесообразность возвращения отработанных кислот в производственный цикл в требуемых концентрациях бесспорна. Правильный кислотооборот должен быть таким, при котором все отработанные кислоты после регенерации использовались бы на заводе.
При проектировании были использованы данные действующего производства по выпуску концентрированной азотной кислоты на Федеральном казенном предприятии «Казанский Государственный Пороховой Завод».
Заключение
В настоящее время в процессе простой денитрации отработанной серной кислоты применяются аппараты барботажного типа. Барботажным аппаратам характерны низкие предельные нагрузки по газу. Это объясняется тем, что с увеличением скорости движения газовой фазы по аппарату увеличивается и количество жидкости, уносимой газом с нижележащей тарелки на вышележащую. Большой брызгоунос снижает движущую силу процесса и, тем самым, уменьшает эффективность абсорбции.
Сделан вывод о том что для рассматриваемого процесса наибольший эффект дает использование в колонне простой денитрации вихревых контактных устройств. В качестве наиболее удачной конструкции для процесса денитрации было выбрано ВКУ с нисходящим потоком фаз.
Для данного контактного устройства без патрубка были проведены экспериментальные исследования гидравлического сопротивления и определение коэффициента массоотдачи в жидкой фазе методом десорбции кислорода из воды в воздух. По полученным данным построены графики зависимости гидравлического сопротивления и коэффициента массоотдачи от расходов жидкости и газа, определена эффективность ступени. Так же были проведены сравнения экспериментальных данных. Получены уравнения зависимости гидравлического сопротивления от скорости газа в щелях. Определили уравнение учитывающие как режимы и геометрические параметры исследуемого объекта, так и физико-химические свойства системы. Разработано два вида промышленных вихревых колонн денитрации отработанных кислот (с одним и двумя ВКУ на тарелке) для ФКП КГКПЗ.
Список литературы
1. Гиндич В.И., Забелин Л.В., Марченко Г.Н. Производство нитратов целлюлоз: технология и оборудование. ЦНИИНТИ, 1984.
2. Атрощенко В.И., Каргин С.И. Технология азотной кислоты: учебное пособие. М.: Химия, 1970.
3. Изготовление концентрированной азотной кислоты и регенерации отработанных кислот: технологический регламент. Казань: ФПК КГКПЗ, 1985.
4. Лебедев, А.Я., Тарасов А.П. Регенерация отработанных смесей азотной и серной кислот. М.: Дом техники, 1963.
5. Справочник сернокислотчика. Коллектив авторов, под ред. проф. Малина К.М. М.: Химия, 1971.
6. Исследование массоотдачи в жидкой фазе в вихревых аппаратах: методические указания / сост. Л.М. Останин, А.М. Шамсутдинов, Р.Н. Хамидуллин, Т.А. Ларкина; Казан. гос. технолог. ун-т. — Казань, 2002. — 16 с.
7. Руководство по определению показателей качества воды полевыми методами [Электронный ресурс]. — Режим доступа: h**t://anchem.r*/literature/books/muraviev, свободный
8. Грошев А.П. Технический анализ / А.П. Грошев. — М.: Химия, 1953.
9. Сафин Р.Ш., Лобанов В.М. К вопросу исследования вихревого эффекта в скоростных массообменных аппаратах.//Труды КХТИ им. С.М. Кирова, 1968, Вып. 39, с. 283-288.
10. Касаткин А.Г. Основные процессы и аппараты химической технологии. 9-е изд., пер. и доп. М., Химия, 1973. 754 с.
11. Пери Дж. Справочник инженера-химика. Пер. с англ./Под ред. Н.М. Жаворонкова и П.Г. Романкова. Т.1 —2. Л.: Химия, 1969. 640 с.
12. Каферов В.В., Петров В.Л., Мешалкин В.П. Принципы математического моделирования химико-технологических систем — М.: Химия, 1974, 344 с.
13. Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии: Учебное пособие для вузов/Под ред. П.Г.Романкова. — 9-е изд. перераб. и доп. — Л.: Химия, 1981. — 560 с.
14. Рид Р., Шервуд Т. Свойства газов и жидкостей. Пер. с англ./Под ред. В.Б. Когана. Л.: Химия, 1971. 334 с.
15. Лащинский А.А. Основы конструирования и расчета химической аппаратуры / А.А. Лощинский, А.Р. Толщинский. — Л.: Машиностроение, 1970. — 750 с.
16. Основные процессы и аппараты химической технологии. Под ред. Дытнерского Ю.И. М.: Химия, 1991.
17. Основы конструирования и расчета химической аппаратуры. Лащинский А.А. Толчинский А.Р., Л.: Машиностроение, 1970.
18. Экономическое обоснование научно-исследовательских дипломных работ: методические указания / сост. Г.Р. Стрекалова, О.В. Газизова. Г.И.Рахимова; Казан.гос.технол.ун-т. - Казань. 2004. - 36с.
19. Сергеев И.В. Экономика предприятия / И.В.Сергеев. - М.: Финансы и статистика, 2001 - 304 с.
10 Справочник по технике безопасности / под ред. А.П. Долина. - М.: Энергоиздат, 1985 - 640с.
11 Предельно допустимые концентрации вредных веществ в воздухе и в воде: Справочник. -Л.: Химия, 1975. -456с.
12 Определение категорий помещений, зданий и наружных установок по взрывопожарной и пожарной опасности: НПБ 105 - 03. - М.: ГУГПС МЧС России, 2003.-48с.
13 Отопление, вентиляция и кондиционирование: СНиП 2.04.05 - 91: утв. М-вом энергетики РФ 14.04.92 : ввод в действие с 04.09.92. - М: ЦИТП Госстрой СССР, 1992. - 64с.
14 Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки : СН 2.2.4/2.1.8 - 562 - 96 : утв. Постановлением Госкомсанэпиднадзором России 31.10.96 : ввод в действие с 01.12.96. - М.: Стройиздат, 1996. - 8с.
15 ГОСТ 12.1.005 - 88. Общие санитарно-гигиенические требования к воздуху рабочей зоны. -Взамен ГОСТ 12.1.005 - 76: введен с 01.01.88. - 32с.
16 Правила устройств электроустановок: справочное пособие. - М.:
Энергоатомиздат. 1987. - 648с.
17 Инструкция по устройству молниезащиты зданий и сооружений: РД
34.21.122 - 87 : утв. М-вом энергетики РФ 13.05.01 : ввод в действие с 02.11.01
-М.:ЭНАС 2001. -27с.
18 Естественное и искусственное освещение: СНиП 23-05-95: утв. М-вом энергетики РФ 25.03.95: ввод в действие с 01.08.95. - М.: Светотехника, 1995.-20с.
8 Вопросы проектирования систем автоматизации в дипломных
проектах: методические указания / сост. Н. И. Егоров; Казан, гос. технолог, ун-
т.-Казань, 1998.-30 с.
9 Системы автоматизации и АСУТП в дипломных проектах. Основные
процессы проектирования: методические указания / сост. Н. И. Егоров; Казан,
гос. технолог, ун-т. - Казань. 1998. - 40 с.
Тема: | «Изучение процесса массоотдачи в вихревом контактном устройстве (ВКУ) на примере. Метод десорбции плохо растворимого газа кислорода из воды в воздух.» | |
Раздел: | Промышленность и Производство | |
Тип: | Дипломная работа | |
Страниц: | 124 | |
Стоимость текста работы: | 700 руб. |
Закажите авторскую работу по вашему заданию.
- Цены ниже рыночных
- Необходимый уровень антиплагиата
- Прямое общение с исполнителем вашей работы
- Бесплатные доработки и консультации
- Минимальные сроки выполнения
- Пишем сами, без нейросетей
Мы уже помогли 24535 студентам
Средний балл наших работ
- 4.89 из 5
написания вашей работы
-
Дипломная работа:
Рассчитать и спроектировать стадию абсорбции окислов азота в производстве азотной кислоты
128 страниц(ы)
ВВЕДЕНИЕ 3
1 ЛИТЕРАТУРНЫЙ ОБЗОР 4
1.1 Историческая справка 4
1.2 Описание технологии 7
1.3 Физико-химические основы получения азотной кислоты 191.4 Способы окисления оксида азота 25РазвернутьСвернуть
1.5 Недостатки существующей технологии и пути ее совершенствования 33
1.7 Аэродинамика вихревого контактного устройства 43
2 ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ 54
2.1 Описание методики 54
2.2 Обработка результатов эксперимента 59
3 РАСЧЕТНАЯ ЧАСТЬ 63
3.1 Материальный баланс 63
3.2 Тепловой баланс 80
3.2 Расчет толщины стенки 82
3.3 Расчет днища 82
3.4 Расчет крышки 83
3.5 Расчет фланцевого соединения 84
3.6 Расчет вихревого контактного устройства 87
5 МЕТРОЛОГИЧЕСКАЯ ПРОРАБОТКА 89
5.1 Описание функциональной схемы автоматизации установки 89
5.2 Обработка результатов прямых измерений 89
6 ОБЕСПЕЧЕНИЕ ПРОИЗВОДСТВЕННОЙ И ЭКОЛОГИЧЕСКОЙ БЕЗОПАСНОСТИ 99
6.1 Характеристика производственной и экологической опасности объекта 99
6.2 Расчет освещения 99
6.3 Метеоусловия 101
6.4 Вентиляция и отопление 102
6.5 Шум и вибрация 102
6.6 Индивидуальные средства защиты 103
6.7 Электробезопасность 103
6.8 Пожарная безопасность 106
6.9 Молниезащита 107
6.10 Экологичность работы 108
7 ПАТЕНТНЫЕ ИССЛЕДОВАНИЯ 109
8 ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ 118
8.1 Составление сетевого графика 118
8.2 Затраты на основные и вспомогательные материалы 119
8.3 Энергетические затраты 119
8.4 Фонд заработной платы 120
8.5 Накладные расходы 120
8.6 Амортизационные отчисления 121
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 123
-
Курсовая работа:
Разработать и спроектировать скруббер для очистки отходящих газов аммиака и мела из сушилки.
90 страниц(ы)
ВВЕДЕНИЕ
1 АНАЛИТИЧЕСКАЯ ЧАСТЬ…
1.1 Историческая справка…
1.2 Выбор и обоснование метода производства…1.3 Характеристика сырья, полуфабрикатов и готовой продукции.РазвернутьСвернуть
2 РАСЧЕТНО-ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ….
2.1 Описание технологической схемы производства азофоски….
2.2 Внесенные изменения по сравнению с аналогом их обоснование ….
2.3 Техническая характеристика сырья….
3 РАСЧЕТ ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ….
3.1 Расчет материального баланса….
3.2 Расчет вихревого контактного устройства нижней ступени….
3.3. Расчет переливных устройств….
3.4 Расчет штуцеров….
3.5 Расчет теплового баланса….
3.6 Механический расчет…
3.7 Расчет фильтрующих элементов….
4 ТЕХНИКО-ЭКОНИЧЕСКИЕ ПОКАЗАТЕЛИ….
5 ТЕХНОЛОГИЧЕСКАЯ БЕЗОПАСНОСТЬ….
ЗАКЛЮЧЕНИЕ….
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ….
-
Шпаргалка:
5 страниц(ы)
1. Человек и его окружающая среда
2. Основные физиологии труда и комфортные условия жизнедеятельности
3. Промышленная вентиляция4. Основные светотехнические характеристикиРазвернутьСвернуть
5. Классификация производственного освещения
6. Источники искусственного света
7. Негативные факторы техносферы
8. Воздействие негативных факторов на человека и среду обитания
9. Воздействие негативных факторов и их нормирование
10. Механические колебания
11. Акустические колебания
12. Нормирование шума
13. Инфразвук
14. Ультразвук
15. Электромагнитные поля
16.Воздействие электромагнитных полей на человека
17. Нормирование электромагнитных полей
18. Методы защиты от воздействия электромагнитных полей
19. Ионизирующее излучение
20. Электробезопасность
21. Факторы, определяющие степень воздействия электрического тока
22. Защитное заземление
23. Вредные вещества
24. Чрезвычайные ситуации
25. Общие сведения о процессе горения
26. Системы и аппараты пожаротушения
27. Причины пожаров на производстве
28. Оценка пожарной опасности в промышленных предприятиях
-
Дипломная работа:
Особенности внедрения электронного документооборота в банковской системе
68 страниц(ы)
ВВЕДЕНИЕ 3
ГЛАВА 1. ТЕОРЕТИЧЕСКИЕ И ПРАВОВЫЕ ОСНОВЫ ЭЛЕКТРОННОГО ДОКУМЕНТООБОРОТА 6
1.1. Понятие «электронный документооборот» и подходы к нему, цели и задачи 61.2. Регулирование электронного документооборота в системе права Российской Федерации 11РазвернутьСвернуть
ГЛАВА 2. ОБЩАЯ ХАРАКТЕРИСТИКА ПАО «БАНК УРАСЛИБ» 21
2.1. Общая характеристика организационной структуры ПАО «БАНК УРАЛСИБ» 21
2.2. Оценка состояния системы электронного документооборота в ПАО «БАНК УРАЛСИБ» 33
ГЛАВА 3. НАПРАВЛЕНИЯ СОВЕРШЕНСТВОВАНИЯ СИСТЕМЫ ЭЛЕКТРОННОГО ДОКУМЕНТООБОРОТА В ПАО «БАНК УРАЛСИБ» 45
3.1. Анализ внедрения системы электронного документооборота в ПАО «БАНК УРАЛСИБ» 45
3.2. Рекомендации по внедрению системы электронного документооборота 53
ЗАКЛЮЧЕНИЕ 61
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ И ЛИТЕРАТУРЫ 63
-
Дипломная работа:
60 страниц(ы)
Список сокращений….
Введение….
I. Литературный обзор…
1.1 Водорастворимые полимеры акриламида….
1.2 Получение полимеров акриламида…1.3 Механизм полимеризации акриламида…РазвернутьСвернуть
1.4 Химические свойства полиакриламида….
1.5 Применение полимеров акриламида….
1.6 Механизм и основные виды полимеризации ДАДМАХ….
1.7 Кинетика полимеризации N,N-диметил-N,N-диаллиламмоний хлорида при глубоких степенях превращения….
1.8 Разработка технологии синтеза поли-N,N-диметил-N,N-диаллиламмоний хлорида…
1.9 Двухстадийный способ полимеризации ДАДМАХ в водном растворе….
1.10 Полимеризация ДАДМАХ в тонком слое….
1.11 Суспензионная полимеризация ДАДМАХ….
1.12 Радиационная полимеризация ДАДМАХ…
1.13 Оптимизация полимеризационного процесса…
Заключение по литературному обзору…
II Экспериментальная часть….
2.1 Характеристика исходных веществ и реагентов….
2.2 Методы исследования….
2.2.1 Весовой метод исследования сорбции и десорбции воды….
2.3 Методика эксперимента….
2.3.1 Методика синтеза высоконабухающих гидрогелей на основе АА и ДАДМАХ….
2.3.2 Методика изучения динамики абсорбции и десорбции воды гидрогелем…
III Результаты и их обсуждения….
3.1. Методическая часть…
3.1.1 Методические рекомендации по использованию результатов работы в курсе химии высокомолекулярных соединений….
3.1.2 Разработка методической части…
3.1.3 Заключение по методической части….
Вывод…
Литература….
Приложение 1
Приложение 2
-
Дипломная работа:
Совершенствование системы грубой очистки водород содержащего газа
66 страниц(ы)
Актуальность темы. Сырьё в виде водород содержащего газа включает в себя мелкие посторонние частицы, включения, осколки и т.д. Для работы установки в целом необходима качественная очистка сырья. Это предполагает за собой установку специализированного оборудования, с учетом требований к качеству очистки газа.Целью работы является модернизация системы очистки водород содержащего газа в узле газоочистки установки ЛЧ-600, что позволит повысить процент очистки газа и сделает возможным улавливать частицы размером до 5 микрон.РазвернутьСвернуть
Задачи работы:
• Изучить существующие конструкции фильтров;
• Провести исследования по изучению степени очистки фильтров различной конструкции;
• Провести расчёт электрофильтра;
• Провести сравнительный анализ работы циклонного фильтра и электрофильтра.
-
Кейсы/Задачи:
ЗАДАЧИ ПАВЛОВ РОМАНКОВ РАЗДЕЛ 4 Теплопередача
1 страниц(ы)
4.1. Во сколько раз увеличится термическое сопротивление стенки стального змеевика, свернутого из трубы диаметром 38х2,5 мм, если покрыть ее слоем эмали толщиной 0,5 мм? Считать стенку плоской. Коэффициент теплопроводности эмали 1,05 Вт/(м.К).4.2. Паропровод длиной 40 м, диаметром 51x2,5 мм покрыт слоем изоляции толщиной 30 мм; температура наружной поверхности изоляции t=45°С, внутренней tг = 175°С. Определить количество теплоты, теряемое паропроводом в 1 ч. Коэффициент теплопроводности изоляции λ = 0,116 Вт/(м-К).РазвернутьСвернуть
4.3. Стальная труба диаметром 60x3 мм изолирована слоем пробки толщиной 30 мм и сверху еще слоем совелита (85 % магнезии + 15% асбеста) толщиной 40мм. Температура стенки трубы -110°С, а наружной поверхности изоляции 10 °С. Вычислить часовую потерю холода с 1 м длины трубы.
4.4. Как изменится потеря холода в условиях предыдущей задачи, если внутренний слой сделать совелитовым (б = 40 мм), а наружный - пробковым (δ = 30 мм)?
4.5. Найти температуру внутренней поверхности обмуровки аппарата (рис. 4.19), если температура на наружной поверхности ее 35 °С. Толщина обмуровки 260 мм. Термометр, заделанный на глубину 50 мм от наружной поверхности, показывает температуру 70 °С.
4.6. Вычислить коэффициент теплопроводности для: а) жидкого хлороформа при t = 20 °С; б) сернистого газа при t = 160 °С и абсолютном давлении 1 кгс/сма (~0,1 МПа); в) 25% водного раствора хлористого кальция при t= 30 °С.
4.7. Необходимо испарять 1600 кг/ч жидкости, кипящей при t= 137°С и поступающей в испаритель при этой температуре. Удельная теплота испарения жидкости r = 377•108 Дж/кг. Температура греющего пара должна быть не ниже 150 °С. Определить расход греющего пара: а) сухого насыщенного, риаб = 4 кгс/сма (~0,4 МПа); б) перегретого до 250 °С, ризб = 4 кгс/см2 (~0,4 МПа); в) перегретого до 250°С, риаб = 3 кгс/смя (~0,3 МПа). Удельная теплоемкость перегретого пара 2,14-103 Дж/(кг-К).
Изобразить процессы изменения состояния греющего пара на диаграмме Т - S. Конденсат греющего пара отводится при температуре конденсации.
4.8. До какой температуры будут нагреты глухим паром 2 т раствора хлористого кальция, если расход греющего пара (ра6с = 2 кгс/сма, т. е. ~0,2 МПа) за 2,5 ч составил 200 кг, а расход теплоты на нагрев аппарата и потери теплоты в окружающую среду составляют в среднем 2030 Вт? Начальная температура раствора 10 °С. Удельная теплоемкость раствора 2,5 х 103 Дж/(кг К).
4.9. Определить количество передаваемой теплоты в противоточном конденсаторе, в котором конденсируется 850 кг/ч пара сероуглерода под атмосферным давлением. Пар сероуглерода поступает в конденсатор с температурой 90 °С. Жидкий сероуглерод выхолит из конденсатора при температуре на в °С ниже температуры конденсации. Удельная теплоемкость пара сероуглерода 0,67.103 Дж/(кг-К).
4.10. В кожухотрубчатый конденсатор поступает 120 кг/ч сухого насыщенного пара диоксида углерода под давлением Рабе = 60 кгс/см2 (~6,0 МПа). Жидкий диоксид углерода выходит из конденсатора под тем же давлением при температуре конденсации. Принимая разность температур диоксида углерода и воды на выходе воды из конденсатора 5 К, определить необходимый расход воды, если она поступает в конденсатор с температурой 10 °С.
4.11. Колонна для ректификации жидкого воздуха покрыта слоем тепловой изоляции из шлаковой ваты толщиной 250 мм. Температура жидкости внутри колонны -190 °С, температура воздуха в помещении 20 °С. Какое количество теплоты может проникать из окружающего воздуха в колонну через 1 ма поверхности, если пренебречь термическими сопротивлениями со стороны жидкости, окружающего воздуха и металлической стенки колонны?
4.12. Как изменится коэффициент теплопередачи в аппарате, если заменить стальные трубы диаметром 38x2,5 мм на медные такого же размера: а) в паровом калорифере для воздуха, в котором aвозд = 41 Вт/(м8.К), агр. пара = 11600 Вт/(м2-К); б) в выпарном аппарате, в котором араств = 2320 Вт/(ма-К), агр. пара = 11600 Вт/(мг-К)? Загрязнений поверхности не учитывать.
-
Кейсы/Задачи:
ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 10 Сушка
2 страниц(ы)
10.1. Во сколько раз больше придется удалить влаги из 1 кг влажного материала при высушивании его от 50 до 25%, чем при высушивании от 2 до 1 % влажности (считая на общую массу). В обоих случаях поступает на сушку 1 кг влажного материала.
10.2. Найти влагосодержание, энтальпию, температуру мокрого термометра и точку росы для воздуха, покидающего сушилку при I = 50 °С и ? = 0,7
10.3. Температура воздуха по сухому термометру 60 РС, по мокрому 30 \"С. Найти все характеристики воздуха.
10.4. Найти влагосодержание и относительную влажность паровоздушной смеси при 50 °С, если известно, что парциальное давление водяного пара в смеси 0,1 кгс/см2.
10.5. Найти содержание водяного пара в смеси- а) с воздухом, б) с водородом, в) с этаном (считая на 1 кг сухого газа) при t = 35 °С ? = 0,45. Общее давление (абсолютное) П = 1,033 кгс/см2.
10.6. Сопоставить удельный расход воздуха и теплоты в сушилке для летнего и зимнего времени (в условиях Ленинграда), если в обоих случаях воздух, уходящий из сушилки, будет иметь t2 = 40 °С и ?2 = 0,6. Сушилка теоретическая, нормальный сушильный вариант. Характеристики состояния воздуха в различных районах в разное время года см. в табл. ХL.
10.7. Общее давление (абсолютное) паровоздушной смеси при 150 °С и относительной влажности ? = 0,5 составляет 745 мм рт. ст. Найти парциальное давление водяного пара и воздуха и влагосодержание воздуха.
10.8. Влажный воздух с температурой 130 °С и ? = 0,3 находится под давлением Рабс = 7 кгс/см2 (~ 0,7 МПа). Определить парциальное давление воздуха, его плотность и влагосодержание.
10.9. Какое количество влаги удаляется из материала в сушилке, если воздух поступает в сушилку в количестве 200 кг/ч (считая на абсолютно сухой воздух) t1 = 95 °С, ?1 =5%, а уходит из сушилки с t2 = 50 °С и ?2 = 60%? Определить также удельный расход воздуха.
10.10. Влажный воздух с температурой 130 °С и ? = 1 находится под абсолютным давлением П = 7кгс/см2 ( 0,7 МПа). Найти парциальное давление водяного пара, плотность влажного воздуха и его влагосодержание.
Сравнить результаты задач 10.10 и 10.8.
10.11. Определить производительность вытяжного вентилятора для сушилки, в которой из высушиваемого материала удаляется 100 кг/ч влаги при следующих условиях: t1 = 15 °С, ?1 =0,8, t2 = 45 °С, ?2 = 0,6, П = 750 мм рт. ст.
10.12. Воздух перед поступлением в сушилку подогревается в калорифере до 113 °С. При выходе из сушилки температура воздуха 60 °С и ?2 = 0,3. Определить точку росы воздуха, поступающего в калорифер. Процесс сушки идет по линии I = соnst;. -
Дипломная работа:
50 страниц(ы)
Реферат 4
Введение 5
1. Литературный обзор 6
1.1. Основные физико-химические свойства и константы
аммиачной селитры 61.1.1. Основные свойства нитрата аммония 6РазвернутьСвернуть
1.1.2. Кристаллические формы 7
1.1.3. Растворимость аммиачной селитры 7
1.1.4. Гигроскопичность и слеживаемость 9
1.1.5. Применение добавок 11
1.2. Производство аммиачной селитры 26
1.2.1. Сыръе для получения аммиачной селитры 26
1.2.2. Основные стадии производства т 27
1.3. Агрегаты производства аммиачной селитры 37
1.3.1. Принципиальная схема агрегата АС – 67 38
1.3.2. Принципиальная схема агрегата АС – 72 41
1.3.3. Принципиальная схема агрегата АС – 72М 43
1.3.4. Сравнительные таблицы агрегатов АС 45
2. Расчетная часть 48
2.1. Механический расчет 48
2.1.1. Расчет толщины стенок 48
2.1.2. Расчет толщины крышек и днищ 48
2.1.3. Расчет фланцевого соединения 49
2.1.4. Расчет опор аппарата 55
2.2. Расчет фильтрующих элементов 57
2.3. Расчет вихревого контактного устройства 58
2.4. Материальный баланс 59
2.5. Расчет переливных устройств 63
3. Выводы по работе 64
Список использованной литературы 65
Приложение 67
-
Курсовая работа:
Регулирование противоточных барабанных сушилок
13 страниц(ы)
1. Описание технологического процесса
2. Сделать чертёж по ГОСТу – Функциональная схема автоматизации,
3. Функциональная схема автоматизации, выполненная развёрнутым способом по ГОСТу.4. Спецификация на приборы и средства автоматизацииРазвернутьСвернуть
5. Схема привязки КТС (комплекс технических средств к объекту)
Описание схем регулирования
Список использованных источников -
Курсовая работа:
Физическое описание явления фильтрации жидкости
41 страниц(ы)
ВВЕДЕНИЕ 3
1. УПРУГИЙ РЕЖИМ ФИЛЬТРАЦИИ 4
1.2 Уравнения безнапорной фильтрации несжимаемой жидкости 8
2. ОСОБЕНОСТИ ДВИЖЕНИЯ ПОТОКА 132.1 Структура фильтрационного потока 17РазвернутьСвернуть
2.2 Установившаяся и неустановившаяся фильтрация 18
2.3 Определение направленности и скорости потока 20
2.4 Характеристические функции некоторых основных типов
плоского потока 22
2.5. Неустановившийся фильтрационный поток, в котором о
дна жидкость вытесняет другую 28
3. ПРОСТЕЙШИЕ ОДНОМЕРНЫЕ ПОТОКИ 31
ЗАКЛЮЧЕНИЕ 40
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 41
-
Курсовая работа:
Спроектировать участок производства труб рукавным способом
80 страниц(ы)
ВЕДЕНИЕ 5
1 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ И ВЫБОР МЕТОДА ПРОИЗВОДСТВА ПЛЕНКИ 6
2 ВЛИЯНИЕ ТЕХНОЛОГИЧЕСКИХ И КОНСТРУКТИВНЫХ ФАКТОРОВ НА КАЧЕСТВО ПРОДУКЦИИ 223 ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ 29РазвернутьСвернуть
3.1 Характеристика сырья 29
3.2 Характеристика готовой продукции 30
3.3 Материальный расчет производства 32
3.4 Разработка и описание технологической схемы 34
3.5 Расчет технологических параметров 39
3.5.1 Расчет температуры переработки 39
3.5.2 Расчет скорости отвода пленки условия обеспечения охлаждения 40
3.6 Выбор и расчет основного и вспомогательного оборудования 43
3.6.1 Выбор и расчет основного оборудования 44
3.6.2 Выбор и расчет вспомогательного оборудования 44
3.7 Разработка конструкции и описание технологической оснастки 46
3.7.1 Описание устройства технологической оснастки 46
3.7.2 Расчет основных параметров технологической оснастки (расчет пере-пада давления) 48
3.7.3 Расчет исполнительных размеров формообразующих элементов 49
3.8 Технологический контроль производства, причины появления и методы устранения дефектов в пленке 55
ВЫВОДЫ
CПИСОК ЛИТЕРАТУРЫ
-
Курсовая работа:
Расчет и подбор котла пищеварочного
26 страниц(ы)
Введение… 5
Литературный обзор… 6
Часть 1 Описание группы оборудования…. 6
Часть 2 Описание конкретной группы оборудования для варки… 112.1 Котел КПЭ-60…. 12РазвернутьСвернуть
2.2 Котел КПЭСМ-60…. 14
2.3 Котел КПЭ-100Г…. 15
Часть 3 Описание принципа работы…. 17
3.1 Описание принципа работы электрического пищевого котла…. 17
3.2 Правила эксплуатации и техники безопасности… 19
3.3 Расчет электрического котла КПЭ-250… 22
Заключение… 26
Список литературы…. 27
Ведомость технического проекта…. 28
-
Курсовая работа:
Разработка расходомера переменного перепада давления (РППД) с диафрагмой
27 страниц(ы)
Введение 3
1. Описание расходомера с тепловыми метками 4
2 Расчет теплофизических характеристик измеряемой среды 103. Расчет сужающего устройства 12РазвернутьСвернуть
4 Выбор схемы сужающего устройства 19
Заключение 26
Список используемых источников 27
-
Кейсы/Задачи:
Павлов Романков раздел 11 Глубокое охлаждение
2 страниц(ы)
11.1. Вычислить холодильный коэффициент и мощность, потребляемую холодильной установкой, работающей по циклу Карно, если ее холодопроизводительность 6400 Вт при температуре испарения -10°С. Температура конденсации 22 °С.11.2. Найти минимальную затрату работы (по циклу Карно) и расход воды в конденсаторе при выработке 100 кг/ч льда из воды, имеющей температуру 0 °С. Хладагент испаряется при -5°С, а конденсируется при 25°С. Вода в конденсатор подается при 12 СС, а уходит при 20 СС. Удельная теплота замерзания воды 335 кДж/кг.РазвернутьСвернуть
11.3. Определить удельную холодопроизводительность хладагента и холодильный коэффициент цикла для: а) аммиака; б) диоксида углерода и в) дифтордихлорметана СF2Сl2. Температура испарения - 15 0С, температура конденсации 300С. Цикл сухой, переохлаждение жидкости перед дросселированием отсутствует.
11.4. Вычислить теоретический холодильный коэффициент углекислотной холодильной установки, если температура конденсации 20°С, а температура испарения -40°С. Цикл сухой, переохлаждение жидкости перед дросселированием отсутствует.
11.5. Сравнить теоретические холодильные коэффициенты аммиачной компрессионной холодильной установки, работающей при температуре испарения -20 °С и температуре конденсации 30 °С: а) для цикла Карно; б) для реального влажного цикла; в) для сухого цикла без переохлаждения жидкого аммиака; г) для сухого цикла с переохлаждением до 25 СС жидкого аммиака после конденсации.
11.6. По условиям предыдущей задачи сравнить теоретические холодильные коэффициенты для фреоновой холодильной установки, пользуясь диаграммой i - lg р (рис. XXVIII).
Задача 11.7 В конденсаторе аммиачной холодильной установки 20 м3/ч воды нагревается на 6 К. Теоретическая мощность, затрачиваемая компрессором, 23,5 кВт. Определить холодопроизводительность установки и холодильный коэффициент.
-
Курсовая работа:
Расчет и подбор печи электрической конвейерной ПКЖ
35 страниц(ы)
Введение 4
Литературный обзор 5
Часть 1 Описание группы оборудования 5
1.1 Классификация технологических машин 14Часть 2 Описание конкретной группы овощерезательных машин 18РазвернутьСвернуть
2.1 Жарочная печь ХПА-40 18
2.2 Тупиковая люлечно-подиковая конвейерная печь П119-М 20
2.3 Тупиковая люлечно-подиковая конвейерная печь П-104 23
2.4 Туннельная печь Г4 ХПС-40 24
Часть 3 Описание принципа работы 25
3.1 Описание принципа действия конвейерной печи ПКЖ 25
3.2 Правила эксплуатации и техники безопасности 26
3.3 Расчет конвейерной печи ПКЖ 30
Заключение 32
Список литературы 34
Ведомость технологического проекта 35