У нас можно недорого заказать курсовую, контрольную, реферат или диплом

«Численное решение краевой задачи для обыкновенного дифференциального уравнения второго порядка на Паскале (Pascal)» - Лабораторная работа
- 9 страниц(ы)
Содержание
Введение
Выдержка из текста работы
Заключение
Список литературы
Примечания

Автор: navip
Содержание
1. Постановка задачи 3
2. Схема алгоритма. 4
3. Текст программы на Паскале 5
4. Результаты расчёта 8
5. Список литературы 9
Введение
Численное решение краевой задачи для обыкновенного дифференциального уравнения второго порядка.
Выдержка из текста работы
3. Текст программы на Паскале
var
yx,xy,l,v,p,ff,ay,by,x:array [0.10] of real;
y,a,b:array[0.10,0.1] of real;
i,n,o:integer;
c,d,h,k:real;
label
lap1;
begin
writeln('введите наивысший порядок производной не больше трех ');
readln(n);
i.
for i:=0 to n do
readln(l[i]);
if (n=1) and (l[1]=0) or (n=2) and (l[2]=0) or (n=3) and (l[3]=0) then begin
writeln('деление на ноль');
goto lap1;
end;
writeln('введите коэффициент при x');
readln(k);
writeln('введите отрезок ');
readln(c,d);
o:=5;
h:=abs(d-c)/o;
writeln('шаг=',h:1:1);
writeln('задайте начальные условия y(x)= ');
for i:=0 to n-1 do
readln(v[i]);
if n=3 then begin
yx[0]:=v[0];
ay[0]:=v[1];
by[0]:=v[2];
p[0]:=(k*c-l[0]*v[0]-l[1]*v[1]-l[2]*v[2])/l[3];
x[0]:=c;
write(' ');
write(' x y a b ');
write(' ',c:7:7,' ',yx[0]:7:7,' ',ay[0]:7:7,' ',by[0]:7:7,' ');
for i:=0 to o-1 do begin
x[i]:=x[i]+h/2;
y[i,1]:=yx[i]+(h/2)*ay[i];
.
x[i+1]:=x[i]+h/2;
p[i+1]:=(k*xy[i]-l[0]*yx[i+1]-l[1]*ay[i+1]-l[2]*by[i+1])/l[3];
end;
for i:=0 to o-1 do begin
write(' ',xy[i]:7:7,' ',yx[i+1]:7:7,' ',ay[i+1]:7:7,' ',by[i+1]:7:7,' ');
end;
write(' ');
end;
if n=2 then begin
x[0]:=c;
yx[0]:=v[0];
ay[0]:=v[1];
p[0]:=(k*c-l[0]*yx[0]-l[1]*v[1])/l[2];
write(' ');
write(' x y a ');
write(' ',c:7:7,' ',yx[0]:7:7,' ',ay[0]:7:7,' ');
for i:=0 to o-1 do begin
x[i]:=x[i]+h/2;
y[i,1]:=yx[i]+(h/2)*ay[i];
a[i,1]:=ay[i]+(h/2)*p[i];
ff[i]:=(k*x[i]-l[0]*y[i,1]-l[1]*a[i,1])/l[2];
xy[i]:=x[i]+h/2;
yx[i+1]:=yx[i]+h*a[i,1];
ay[i+1]:=ay[i]+h*ff[i];
x[i+1]:=x[i]+h/2;
p[i+1]:=(k*xy[i]-l[0]*yx[i+1]-l[1]*ay[i+1])/l[2];
end;
for i:=0 to o-1 do begin
write(' ',xy[i]:7:7,' ',yx[i+1]:7:7,' ',ay[I+1]:7:7,' ');
end;
write(' ');
end;
if n=1 then begin
x[0]:=c;
yx[0]:=v[0];
p[0]:=(k*x[0]-l[0]*yx[0])/l[1];
for i:=0 to o-1 do begin
x[i]:=x[i]+h/2;
y[i,1]:=yx[i]+(h/2)*p[i];
xy[i]:=x[i]+h/2;
ff[i]:=(k*x[i]-l[0]*y[i,1])/l[1];
yx[i+1]:=yx[i]+h*ff[i];
x[i+1]:=x[i]+h/2;
p[i+1]:=(k*xy[i]-l[0]*yx[i+1])/l[1];
end;
write(' ');
write(' x y ');
write(' ',c:7:7,' ',yx[0]:7:7,' ');
for i:=0 to o-1 do begin
write(' ',xy[i]:7:7,' ',yx[i+1]:7:7,' ');
end;
write(' ');
end;
lap1:readln;
end.
Заключение
4. Результаты расчёта
Общее решение однородного уравнения имеет вид
Тогда частное решение при заданных начальных условиях можно записать в виде:
Список литературы
1. Калиткин Н. Н. Численные методы. – М.: Наука, 1978. – 512 с.
2. Самарский А. А. Теория разностных схем. – М.: Наука, 1989. – 616 с.
3. Самарский А. А., Николаев Е. С. Методы решения сеточных уравнений. – М.: Наука, 1978. – 592 с.
4. Рапаков Г. Г., Ржеуцкая С. Ю. Программирование на языке Pascal. . – СПб.: БХВ-Петербург, 2005. – 480 с.
Примечания
Готовые решение задачи на языке Паскаль
К работе прилагается все исходники (Pascal) и отчет (Word)
Тема: | «Численное решение краевой задачи для обыкновенного дифференциального уравнения второго порядка на Паскале (Pascal)» | |
Раздел: | Информатика | |
Тип: | Лабораторная работа | |
Страниц: | 9 | |
Цена: | 600 руб. |
Закажите авторскую работу по вашему заданию.
- Цены ниже рыночных
- Удобный личный кабинет
- Необходимый уровень антиплагиата
- Прямое общение с исполнителем вашей работы
- Бесплатные доработки и консультации
- Минимальные сроки выполнения
Мы уже помогли 24535 студентам
Средний балл наших работ
- 4.89 из 5
написания вашей работы
У нас можно заказать
(Цены могут варьироваться от сложности и объема задания)
682 автора
помогают студентам
42 задания
за последние сутки
10 минут
время отклика
-
Дипломная работа:
Решение краевой задачи для одного дифференциального уравнения эллиптического типа
32 страниц(ы)
Введение….….3
Глава I
Краевые задачи для эллиптических дифференциальных уравнений второго порядка
1.1 Классификация дифференциальных уравненийвторого порядка. Уравнения с двумя неизвестными…5РазвернутьСвернуть
1.2 Класс функций . Определение непрерывности по Гельдеру…7
1.3 Принцип максимума для эллиптических уравнений….8
1.4 Теорема существования решения для эллиптических уравнений….10
1.5 Критерий компактности….11
Глава II
Оценки решения краевой задачи для одного эллиптического уравнения второго порядка
1.6 Постановка задачи….13
1.7 Существование и единственность решения краевой задачи….13
1.8 Уточнение оценки решения краевой задачи….19
Заключение….27
Список литературы….….28
Приложение….….29
-
Дипломная работа:
Оценки решений краевой задачи для одного класса дифференциальных уравнений второго порядка
32 страниц(ы)
Введение…. 3
Глава I. Краевые задачи для эллиптических дифференциальных уравнений второго порядка
1.1 Классификация дифференциальных уравнений второго порядка …. 51.2 Класс функций . Определение непрерывности функций по Гельдеру ….…. 7РазвернутьСвернуть
1.3 Принцип максимума для эллиптических уравнений…. 8
1.4 Теорема существования решения для эллиптических уравнений… 10
1.5 Критерий компактности …. 12
1.6 Теорема Лагранжа о конечных приращениях … 12
Глава II. Оценки решений краевой задачи для одного эллиптического уравнения второго порядка
2.1 Постановка задачи …. 14
2.2 Доказательство существования и единственности решения краевой задачи … 15
2.3 Оценки решения краевой задачи …. 21
Заключение …. 27
Литература ….…. 28
Приложение (графики)….…. 29
-
ВКР:
85 страниц(ы)
Введение 3
1 Дифференциальные уравнения и асимптотические разложения решений 6
1.1 Линейные дифференциальные уравнения 61.2 Нелинейные дифференциальные уравнения 11РазвернутьСвернуть
1.3 Асимптотические оценки и их свойства 15
1.4 Асимптотические ряды и их свойства 18
1.5 Определение и основные свойства асимптотических разложений 22
1.6 Метод Рунге-Кутта для решения дифференциальных уравнений 24
Выводы по первой главе 25
2 Моделирование решения краевой задачи для одного класса обыкновенных дифференциальных уравнений 26
2.1 Постановка задачи и нахождение формального асимптотического разложения решения дифференциального уравнения 26
2.2 Нахождение численного решения обыкновенного дифференциального уравнения второго порядка 28
Выводы по второй главе 31
3 Методика применения компьютерное моделирование в школьном курсе информатики 32
3.1 Основные понятия и принципы компьютерного моделирования 32
3.2 Анализ элективных курсов по компьютерному моделированию в школе. 37
3.3 Элективный курс по компьютерному математическому моделированию в Maple 40
Выводы по третьей главе 55
Заключение 57
Список использованной литературы 59
Приложения 62
-
Дипломная работа:
Оценки решения одной краевой задачи для дифференциального уравнения второго порядка
32 страниц(ы)
Введение….3
Глава I Краевые задачи для эллиптических дифференциальных уравнений второго порядка
1.1 Классификация дифференциальных уравнений второго порядка….51.2 Основные обозначения и термины. Класс функций . Определение непрерывности функций по Гельдеру….7РазвернутьСвернуть
1.3 Принцип максимума для эллиптических уравнений…8
1.4 Теоремы существования решений для эллиптических уравнений….10
1.5 Критерий компактности…12
1.6 Теорема Лагранжа о конечных приращениях….12
Глава II Оценки решений краевой задачи для одного эллиптического уравнения второго порядка
2.1 Постановка задачи….15
2.2 Существование и единственность решения краевой задачи …15
2.3 Оценки решения краевой задачи….21
Заключение….27
Список литературы….….29
Приложение….31
-
Дипломная работа:
Решение краевых задач дифференциального уравне-ния второго порядка
29 страниц(ы)
Введение….….3
Глава I Краевые задачи для эллиптических дифференциальных уравнений второго порядка
1.1 Классификация дифференциальных уравнений второго порядка….51.2 Основные обозначения и термины. Класс функций . Определе-ние непрерывности функций по Гёльдеру… … ….7РазвернутьСвернуть
1.3 Принцип максимума для эллиптических уравнений….…8
1.4 Теоремы существования решений для эллиптических уравне-ний….11
1.5 Критерий компактности….12
Глава II Оценки решений краевой задачи для одного эллиптического уравнения второго порядка
2.1 Постановка задачи….….13
2.2 Существование и единственность решения краевой задачи ….…14
2.3 Оценки решения краевой зада-чи….20
Заключение….….25
Список литературы….….26
Приложение….27
-
Дипломная работа:
45 страниц(ы)
Введение 3
Глава I. Дифференциальные уравнения и асимптотические разложения решений 6
1.1. Дифференциальные уравнения второго порядка 61.2. Преобразование Лиувилля 9РазвернутьСвернуть
1.3. Определение асимптотического ряда 14
1.4. Свойства асимптотических рядов 15
1.5. Классификация особых точек; свойства решений в окрестности регулярной особой точки 21
Глава II. Нахождение формального асимптотического разложения решения дифференциального уравнения 25
2.1. Постановка задачи. Нахождение формального асимптотического разложения решения 25
2.2. Численные решения 32
Заключение 34
Список использованной литературы 35
Приложения 37
Приложение 1. Программа на языке Delphi 37
Приложение 2. Результаты вычислений 41
Предыдущая работа
Метод половинного деления на Паскале (Pascal)