У нас можно недорого заказать курсовую, контрольную, реферат или диплом

«Обучение учащихся уравнениям и неравенствам с модулем в контексте деятельностного подхода» - Дипломная работа
- 89 страниц(ы)
Содержание
Введение
Заключение
Список литературы

Автор: komnatali
Содержание
Введение…. 3
Глава 1. Теоретические основы обучения учащихся уравнениям и неравенствам с модулем в контексте деятельностного подхода… 5
1.1. Деятельностный подход в философии, психологии, педагогике ….… 5
1.2. Деятельностный подход в методике обучения математике…. 13
1.3. Методические аспекты изучения уравнений и неравенств с модулем. 26
Глава 2. Факультативный курс «Уравнения и неравенства с модулем»… 40
2.1. Пояснительная записка…. 40
2.2. Учебно-тематический план… 42
2.3. Конспекты уроков…. 48
Заключение….… 75
Литература…. 76
Введение
Материал, связанный с уравнениями и неравенствами, составляет значительную часть школьного курса математики. Одним из сложных разделов алгебры, изучаемых в школьной программе, являются уравнения и неравенства с модулем, так как в школе им уделяют достаточно мало внимания.
Трудности при изучении данного вида уравнений и неравенств связаны со следующими их особенностями:
Заключение
Проведя исследование психолого-педагогической литературы, мы выяснили, что деятельностный подход выступает как важный компонент методологии обучения математике наряду с диалектикой и системным анализом. Такой подход позволил изменить взгляд на сущность понятия «знание». Так, например, если раньше под знанием понимали информацию, усвоение которой сводится к запоминанию фактов и их воспроизведению, причем развитие ученика связывали с приращением объёма знании, то в настоящее время суть этого взгляда заключается в том, что «знание есть деятельность».
Список литературы
12. Дорофеев Г. В. Алгебра и начала анализа. 10 кл. : задачник для образовательных учреждений : в 2 ч. Ч. II / Г. В. Дорофеев, Л. В. Кузнецова, Е. А. Седова. - М. : Дрофа, 2004. - С. 106-115.
13. Жафяров А. Ж. Параметрическая паутина. Математика. ЕГЭ - уровень С : учеб. пособие / А. Ж. Жафяров. - Новосибирск : НГПУ, 2007. - 457 с.
14. Загвязинский В. И. Теория обучения. Современная интерпретация / В. И. Загвязинский. – М. : Академия, 2001. - 192 с.
15. Зайцев В. Н. Практическая дидактика : учеб. пособ. / В. Н. Зайцев. - М. : Народное образование, 2000. - 224 с.
16. Зимняя И. А. Педагогическая психология : учеб. для студ. вузов / И. А. Зимняя. - 2-е изд., доп., испр. и перераб. - М. : ЛОГОС, 2004. - 384 с.
17. Зиновьева Л. А. Уравнения, содержащие неизвестную под знаком модуля / Л. А. Зиновьева, Н. Д. Щеглова, А. И. Зиновьев // Математика в школе. - 1999. - № 5. - С. 65-67.
18. Зорин В. В. Пособие по математике для поступающих в вузы / В. В. Зорин. - М. : Высш. школа, 1980. - 287 с.
Тема: | «Обучение учащихся уравнениям и неравенствам с модулем в контексте деятельностного подхода» | |
Раздел: | Математика | |
Тип: | Дипломная работа | |
Страниц: | 89 | |
Цена: | 1500 руб. |
Закажите авторскую работу по вашему заданию.
- Цены ниже рыночных
- Удобный личный кабинет
- Необходимый уровень антиплагиата
- Прямое общение с исполнителем вашей работы
- Бесплатные доработки и консультации
- Минимальные сроки выполнения
Мы уже помогли 24535 студентам
Средний балл наших работ
- 4.89 из 5
написания вашей работы
У нас можно заказать
(Цены могут варьироваться от сложности и объема задания)
682 автора
помогают студентам
42 задания
за последние сутки
10 минут
время отклика
-
Дипломная работа:
Методика изучения отдельных вопросов алгебры и начал анализа
255 страниц(ы)
Предисловие…7
Глава I. Методика изучения числовых систем….8
§1. Методика изучения делимости целых чисел…81.1. Делимость целых чисел. Делимость суммы, разностиРазвернутьСвернуть
и произведения….8
1.2. Деление с остатком….12
1.3. Делители….15
1.4. Простые числа….16
1.5. Наибольший общий делитель. Взаимно простые числа….17
1.6. Основная теорема арифметики….18
1.7. Прямые на решетке. Линейные уравнения…20
1.8. Алгоритм Евклида…26
1.9. Выберем наименьшее….31
1. 10. Уравнения и неравенства в целых числах….32
§2. Методика изучения темы «Числовые последовательности»…36
2.1. Определение последовательности. Способы задания последовательности ….37
2.2. Монотонные последовательности. Интерпретации….39
2.3. Ограниченность последовательности….43
2.4 Предел числовой последовательности…46
§3. Методические рекомендации к ведению профильного курса «Комплексные числа в общеобразовательной школе»….48
3.1 Определение комплексных чисел. Их геометрический смысл. Действия с комплексными числами…57
3.2 Сопряженные числа. Модуль и аргумент комплексного числа.58
3.3 Тригонометрическая форма комплексного числа. Действия в тригонометрической форме….60
3.4 Комплексные числа и преобразования плоскости….60
3.5 Извлечение корней из комплексных чисел….62
3.6 Решение уравнений…62
3.7 Задачи с параметрами….63
§4. Сущность и принцип метода математической индукции…64
4.1 Трудности, возникающие при изучений метода….66
4.2 Специфика использования данного метода в обучении….67
4.3 Индуктивный метод при поиске решения задачи….75
Глава II. Методика изучения функций…77
§1. Методика изучения непрерывности и предела функции….77
1.1. Подготовка учащихся к изучению понятий предела и непрерывности функции, теорем о пределах….77
1.2. Наглядно-геометрический вариант введения и изучения предела функции действительного переменного на бесконечности….90
1.3. Наглядно-геометрический вариант изучения предела функции действительного переменного в точке…93
§ 2. Методика изучения сложной
2.1. Определение сложной функции….96
2.2. Свойства сложной функции….99
§3. Методика изучения обратной функции…112
3.1. Методика введения понятия обратной функции….112
3.2. Методика изучения обратной функции по учебнику «Алгебра и начала анализа» под редакцией М.И.Башмакова….124
§4. Методика изучения тригонометрических функций….134
4.1. О введении основных понятии тригонометрии в школе…136
4.2. Градусная и радианная меры угла. Числовая окружность….137
4.3. Тождественные преобразования тригонометрических
выражений….145
4.4. Методика изучения тригонометрических функций….155
4.5. Решение тригонометрических уравнений в школе. Подготовительный этап….168
4.6. Методы решения тригонометрических уравнений…177
4.7. Анализ решений тригонометрических уравнений….…191
4.8. Отбор корней в тригонометрических уравнениях….….193
4.9.О потере корней при решении тригонометрических уравнений 203
4.10. Классификация уравнений….206
4.11. Повторительно-обобщающие уроки в курсе математики….209
4.12. О блочном изучении темы \"Решение тригонометрических уравнений и неравенств\"…244
§5. Методика крупноблочного изучения показательной и логарифмической функции….256
5.1. Обобщение понятия степени. Корень - й степени и его свойства.….256
5. 2. Степень с рациональным показателем….260
5.3. Суть метода УДЕ (укрупнения дидактических единиц)….263
Глава III. Методика обучения решению уравнений и неравенств….294
§1. Трансцендентные уравнения и неравенства….294
1.1. Опорные знания….294
1.2. Показательные уравнения….296
1.3. Логарифмические уравнения….297
1.4. Тригонометрические уравнения…300
1.5. Уравнения, содержащие обратные тригонометрические функции….….303
1.6. Сущность решения уравнений и неравенств…312
§2. Иррациональные уравнения и неравенства….317
2.1. Решение иррациональных уравнений….317
2.2. Решение иррациональных неравенств….322
2.3. Обобщенный метод интервалов…325
§3. Уравнения и неравенства, включающие функции {x} и [x].…327
§4. Рациональное решение уравнений и неравенств с модулем….339
§5. Уравнения и неравенства с параметрами. Функционально-графический метод….342
5.1 Опорные знания …342
5.2. Иррациональные уравнения и неравенства с параметрами…348
5.3. Тригонометрические уравнения и неравенства с параметрами….357
5.4. Показательные и логарифмические уравнения и неравенства
с параметрами….361
5.5. Методика введения функционально – графического метода при решении задач с параметрами ….368
5.6. Применение функционально-графического метода к решению задач с параметрами…373
5.7. Уравнения высших степеней ….377
§6. Методика изучения функциональных уравнений…386
6.1. Понятие функционального уравнения….… .386
6.2. Функциональная характеристика элементарных функций.405
6.3. Методы решения функциональных уравнений….416
§7. Системы алгебраических уравнений….432
§8. Классические неравенства в задачах….444
8.1. Неравенство Бернулли….444
8.2. Неравенство Коши….445
8.3. Неравенство Гюйгенса….449
8.4. Неравенство Коши-Буняковского….453
8.5. Неравенство Иенсена….455
§9. Применение свойств функций к решению уравнений и неравенств с переменными, других задач…457
Глава IV. Методика изучения производной и ее применений…465
§1. К вопросу о дифференцируемости функций…465
§2. Методические рекомендации к изучению производной и ее
применений….470
2.1. Введение. Обзор теоретического материала….470
2.2. Понятие о касательной к графику функции….471
2.3. Мгновенная скорость движения…472
2.4. Производная. Производные элементарных функций…473
2.5. Применение производной к исследованию функций…483
2.6. Другие приложения производной…490
Глава V. Первообразная и интеграл….500
§1. Методика формирования понятия первообразной….500
§2. Область определения первообразной…503
§3. Методика изучения интеграла….505
3.1. Методика изучения неопределенного интеграла….505
3.2. Методика изучения определенного интеграла….506
3.3 Свойства определенного интеграла….512
Глава VI. Задачи повышенной трудности….518
Литература.….551
-
Дипломная работа:
Методика изучения тригонометрических функций. тригонометрические уравнения и неравенства
95 страниц(ы)
Введение 3
Глава I. Определения и основные свойства тригонометрических функций
1.1. Радианная мера дуги. Тригонометрическая окружность 61.2. Связь между числовой прямой и числовой окружностью 9РазвернутьСвернуть
(Лекция-беседа для учащихся 9 – 10 классов)
1.3. Определение основных тригонометрических функций 12
Глава II. Обратные тригонометрические функции 27
2.1. Определение, свойства и графики обратных тригонометрических
функций 28
2.2. Уравнения и неравенства, содержащие обратные
тригонометрические функции 37
Глава Ш. Тригонометрические уравнения и системы 44
3.1. Общие замечания
3.2. Основные способы решения тригонометрических уравнений 46
3.3. Системы тригонометрических уравнений 56
Глава IV. Тригонометрические неравенства. 60
4.1. Доказательство неравенств, связанных с тригонометрическими
функциями
4.2. Решение тригонометрических неравенств 66
4.3. Решение тригонометрических неравенств методом интервалов на
тригонометрической окружности 70
Глава V. Факультативные занятия 79
5.1. Факультативное занятие на тему: Эти разные синусы.
(Гиперболический синус) 81
5.2. Факультативное занятие на тему: Решение «нестандартных»
задач 85
Заключение 92
-
ВКР:
Обучение решению нестандартных задач по алгебре
94 страниц(ы)
Введение 3
1 Психолого-педагогические основы определения понятия «задача» 6
1.1 Различные подходы к определению понятия «задача» 61.2 Функции и классификация задач в обучении математике 10РазвернутьСвернуть
1.3 Обучение поиску решения задач 15
1.4 Структура решения задач 18
1.5 Нестандартные методы решения задач в школьном курсе математики 20
Выводы по главе 1 30
2 Функциональный метод решения нестандартных задач 31
2.1 Место изучения функциональной зависимости в школьном курсе математики 31
2.2 Решение задач с использованием свойств функций 32
2.3 Педагогический эксперимент 52
Выводы по главе 2 55
Заключение 59
Список использованной литературы 60
Приложения 63
-
Дипломная работа:
Методика изучения необходимых и достаточных условий в математике
118 страниц(ы)
Введение 3
Глава I. ОБ ИЗУЧЕНИИ НЕКОТОРЫХ ЛОГИЧЕСКИХ ПОНЯТИЙ НА УРОКАХ МАТЕМАТИКИ 5
Глава II. Необходимо или достаточно? 12Глава III. Методические рекомендации к изучению темы «Необходимые и достаточные условия» 17РазвернутьСвернуть
3.1 Виды теорем 17
3.2 Понятие о необходимом и достаточном условии 21
3.3 Закрепление понятия о необходимом и достаточном условии 27
3.4 Упражнения 28
3.5 Теорема Пифагора 30
3.6 Теорема Виета 32
Глава IV. Необходимые и достаточные условия в теме «Четырёхугольники» 34
Глава V. К вопросу о равносильности уравнений и неравенств 38
5.1 Равносильность уравнений 39
5.2 Изучение равносильных уравнений 44
5.3 Равносильность неравенств 51
5.4 Изучение равносильных неравенств 56
5.5 Равносильность при изучении систем уравнений 58
Глава VI. Профильное обучение математике в старшей школе 62
6.1 Профильное обучение. Курс для учащихся 10-11-х классов. 62
6.2 Методические рекомендации к изучению фрагмента курса «Задачи с параметром» 64
6.2.1 Квадратный трёхчлен. Различные случаи. 64
6.2.2 Необходимые и достаточные условия в задачах с параметром 75
6.2.3 Методы решения уравнений с параметрами 86
6.2.4 Графические методы решения задач с параметром 95
6.3 Методические рекомендации к изучению фрагмента курса «Необходимые и достаточные условия в курсе геометрии» 107
6.3.1 Теорема о равнобедренном треугольнике. 108
6.3.2 Признак параллелограмма 110
6.3.3 Теорема о трёх перпендикулярах 111
Заключение. 115
Литература 117
-
ВКР:
60 страниц(ы)
Введение 3
ГЛАВА I. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РЕАЛИЗАЦИИ ЭЛЕКТРОННОГО ОБРАЗОВАНИЯ 7
1.1. Электронное обучение как тренд образования 71.2. Электронное обучение как средство реализации образовательной программы 16РазвернутьСвернуть
Выводы к первой главе 31
ГЛАВА II. ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ ЭЛЕМЕНТОВ ЭЛЕКТРОННОГО ОБУЧЕНИЯ ПРИ ИЗУЧЕНИИ ШКОЛЬНОГО КУРСА МАТЕМАТИКИ 33
2.1. Разработка курса по подготовке к решению задач с параметрами 33
2.2. Методическое содержание и руководство к использованию курса 44
2.3. Результаты апробация работы 50
Выводы по второй главе 52
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ И ЛИТЕРАТУРЫ 55
-
Курсовая работа:
Изучение показательных уравнений и неравенств в школьном курсе математики
32 страниц(ы)
Введение …. 3
Глава I. Теоретический материал по теме «Логарифмические и показательные уравнения и неравенства»…. 61.1. Исторические вопросы.… 6РазвернутьСвернуть
1.2. Область практического применения… 10
1.3. Выстраивание последовательности изучения темы «Показательная и логарифмическая функции»…. 11
Глава II. Методы и способы решения логарифмических и показательных уравнений и неравенств… 15
2.1. Комплект базовых задач… 15
2.2. Комплект задач повышенной сложности…. 22
2.3. Комплект задач творческого характера…. 25
Заключение…. 29
Список литературы.…. 30