«Основные проблемы организации экономики» - Контрольная работа
- 11.11.2016
- 18
- 1981
Содержание
Введение
Заключение
Список литературы
Автор: kjuby
Содержание
ВВЕДЕНИЕ
ГЛАВА 1. ОСНОВНЫЕ ПРОБЛЕМЫ ОРГАНИЗАЦИИ ЭКОНОМИКИ И ИХ ХАРАКТЕРИСТИКА
ГЛАВА 2. РЫНОЧНОЕ РЕШЕНИЕ ОСНОВНЫХ ПРОБЛЕМ
ГЛАВА 3. ПЛЮСЫ И МИНУСЫ РЫНОЧНОЙ И КОМАНДНОЙ СИСТЕМ
ЗАКЛЮЧЕНИЕ
ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА И ИСТОЧНИКИ
Введение
Альтернативная стоимость - это стоимость (ценность) наиболее приори-тетного среди благ, получение которых становится невозможным при избранном способе использования ограниченных ресурсов. Следовательно, стоимость потерянных возможностей возникает потому, что выбор чего-то одного в свете ограниченных ресурсов означает отказ от чего-то другого. Стоимостью потерянных возможностей является ценность товара или услуги, от которых отказались.
Поскольку ресурсы ограничены, то перед любым обществом возникают экономические проблемы организации экономики. Целью данного реферата является изучение основных проблем организации экономики и поиск путей их решения[2].
Заключение
Что, как и для кого производить? Ответы на эти три вопроса должна найти каждая страна и общество, которые желают эффективно использовать все имеющиеся в их распоряжении ресурсы. Сложность принятия решений по этим вопросам связана с объективными ограничениями и необходимостью делать выбор: ведь ресурсы ограничены и существуют альтернативные издержки. Это относится ко всем обществам, независимо от их политической системы и уровня развития. Различия между странами заключаются только в методах распределения.
Сравнив плюсы и минусы рыночной экономики, можно легко прийти к логичному выводу о том, что рыночная экономика в чистом виде без элементов планирования и надлежащего государственного регулирования хороша только на этапе экономического развития и накопления первичного капитала. В дальнейшем такой тип экономики может навредить и полностью разрушить полученные экономические преимущества, а также вызвать беспорядки в государстве.
В командной экономике главную роль играет государство. Главным устройством в такой экономике выступает план. Для того чтобы управлять всеми предприятиями, давать им плановые задания, распределять ресурсы между предприятиями, государство должно владеть и распоряжаться всеми предприятиями данной страны. Таким образом, в этом типе экономике доминирует государственная собственность.
Рыночная система полностью выигрывает у командной экономики. Од-нако рыночная экономика не может существовать без государственного регу-лирования. Так получается, что рыночная экономика так же нуждается в регулировании.
Список литературы
Источники:
1. h**t://studyf**ance.r*/microeconimics/90-plusy-i-minusy-runochnyh-sistem
2. h**t://vipex***nge.net/ekonomika/15-problemy-organizaczii-ekonomiki.html
3. h**t://w*w.bib***tekar.r*/economicheskaya-teoriya-3/110.htm
4. h**t://z**j.r*/osnovnyie-ekonomicheskie-problemyi.html
5. h**t://w*w.bi***otekar.r*/economicheskaya-teoriya-3/109.htm
6. h**t://del***ymir.biz/ru/columns/2346/
| Тема: | «Основные проблемы организации экономики» | |
| Раздел: | Экономика | |
| Тип: | Контрольная работа | |
| Страниц: | 18 | |
| Стоимость текста работы: | 350 руб. |
Закажите авторскую работу по вашему заданию.
- Цены ниже рыночных
- Необходимый уровень антиплагиата
- Прямое общение с исполнителем вашей работы
- Бесплатные доработки и консультации
- Минимальные сроки выполнения
- Пишем сами, без нейросетей
Мы уже помогли 24535 студентам
Средний балл наших работ
- 4.89 из 5
написания вашей работы
Предыдущая работа
МИКРОЭКОНОМИКА, Вариант 3Следующая работа
Роль детских общественных движений в социальном воспитании детей-
Курсовая работа:
Национальная модель рыночной экономики (на примере различных стран)
41 страниц(ы)
ВВЕДЕНИЕ….3
1. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ АСПЕКТЫ МОДЕЛЕЙ РЫНОЧНОЙ ЭКОНОМИКИ….5
1.1 Сущность, основные модели рыночной экономики….51.2 Национальные модели рыночной экономики различных стран….9РазвернутьСвернуть
2. ОСОБЕННОСТИ МОДЕЛИ РЫНОЧНОЙ ЭКОНОМИКИ В РОССИИ….21
ЗАКЛЮЧЕНИЕ….37
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ….39
-
Дипломная работа:
76 страниц(ы)
Введение 3
1 Финансирование образовательных учреждений 6
1.1 Роль и значение образования в социально-экономическом развитии общества 61.2 Расходы бюджетных образовательных учреждений 14РазвернутьСвернуть
1.3 Источники финансирования системы образования 20
2 Финансирование МБОУ "Глазанская ОШ" 26
2.1 Общие сведения о МБОУ "Глазанская ОШ" 26
2.2 Организационная структура управления МБОУ 29
2.3 Правовая основа деятельности МБОУ 33
2.4 Порядок финансирования МБОУ на муниципальном уровне 39
2.5 Основные проблемы финансового обеспечения МБОУ 47
3 Рекомендации 49
Заключение 57
Список использованных источников 61
Приложение А 66
Приложение Б 68
-
Курсовая работа:
Организация кредитного процесса в коммерческом банке
67 страниц(ы)
Введение 3
1 Теоретические основы организации кредитного процесса в коммерческом банке 5
1.1 Экономическая сущность, функции и виды кредита 51.2 Понятие и виды банковского кредитования 9РазвернутьСвернуть
1.3 Организация кредитного процесса в коммерческом банке, его основные этапы 13
2 Анализ организации кредитного процесса в коммерческом банке на примере ПАО «Росбанк» 20
2.1 Организационно-экономическая характеристика ПАО «Росбанк» 20
2.2 Анализ кредитного портфеля банка 27
2.3 Оценка кредитоспособности заемщика 32
3 Проблемы и рекомендации по совершенствованию кредитного
процесса в коммерческом банке 48
3.1 Проблемы организации кредитного процесса в коммерческом банке 48
3.2 Предложения по совершенствованию кредитного процесса в коммерческом банке 52
Заключение 61
Список использованных источников 64
-
Курсовая работа:
Финансовые проблемы воспроизводства основных средств предприятия
30 страниц(ы)
1 Теоретические основы использования основными средствами…5
1.1 Содержание основных средств как часть имущественного комплекса предприятия…. 51.2 Воспроизводство основных средств: особенности формирования амортизационного фонда организации…. 7РазвернутьСвернуть
1.3 Сравнительная характеристика методик анализа и систем показателей оценки основных средств организации…9
1.4 Особенности формирования основных средств на предприятиях сельского хозяйства….12
2 Оценка и анализ основных средств «СПК колхоз им. Калинина»…13
2.1 Организационно-экономическая характеристика «СПК колхоз им. Калинина»….13
2.2 Анализ влияния эффективности использования основных средств на финансовый результат «СПК колхоз им. Калинина»…. 18
2.3 Анализ влияния налога на имущество на воспроизводство основных средств «СПК колхоз им. Калинина»….22
2.4 Анализ влияния амортизационной политики на воспроизводство основных средств «СПК колхоз им. Калинина»….24
3 Пути повышения эффективности использования основных фондов «СПК колхоз им. Калинина»…26
3.1 Разработка мер по оптимизации амортизационной политики «СПК колхоз им. Калинина»…26
3.2 Рекомендации по повышению эффективности использования основных средств «СПК колхоз им. Калинина»….27
Заключение….28
Список использованных источников….29
Приложение А Финансовая отчетность «СПК колхоз им. Калинина»….30
-
Курсовая работа:
34 страниц(ы)
Введение 4
1 Методические подходы к анализу и оценке основных средств организации 6
1.1 Сущность, содержание основных средств организации 61.2 Сравнительная характеристика методик анализа и систем показателей оценки основных средств организации 8РазвернутьСвернуть
1.3 Информационное обеспечение анализа основных фондов организации 14
2 Оценка и анализ основных средств организации 17
2.1 Организационно-экономическая характеристика «СПК колхоз им. Калинина» 17
2.2 Анализ показателей основных средств СПК колхоз им. «Калинина» 22
2.2.1 Анализ показателей состава, структуры и динамики основных средств 22
2.2.2 Анализ показателей воспроизводства и оборачиваемости основных средств 23
2.2.3 Анализ показателей эффективности использования основных средств 26
3 Пути повышения эффективности использования основных фондов «СПК колхоз им. Калинина» 29
Заключение 30
Список использованных источников 32
Приложение А Анализ показателей состава, динамики, структуры основных средств 33
Приложение Б Анализ показателей эффективности использования основных средств 34
Приложение В Финансовая отчетность СПК колхоз имени «Калинина»….35
-
Курсовая работа:
Аудит и анализ основных средств
48 страниц(ы)
Введение
1. Аудит основных средств
1.1. Основные законодательные и нормативные документы, регулирующие объекты проверки1.2. Источники информации для проверкиРазвернутьСвернуть
1.3. План и программа аудиторской проверки основных средств
1.4. Тест внутреннего контроля, существенность в аудите
1.5. Аудиторская проверка учета основных средств
1.6. Рекомендации по устранению недостатков, выявленных в ходе аудиторской проверки
2. Анализ эффективности использования основных средств
2.1. Анализ эффективности использования основных производственных фондов
2.2. Факторный анализ фондоотдачи и фондорентабельности
2.3. Резервы повышения эффективности использования основных средств и направления улучшения их использования
Заключение
Список литературы
-
Тест:
МАТЕМАТИКА (часть 3) (код – МА3) вариант 4 (18 заданий по 5 тестовых вопросов)
29 страниц(ы)
Задание 1
Вопрос 1. Пусть А, В - множества. Что означает запись A B, B A?
1. Множество А является строгим подмножеством множества В, которое является истинным подмножеством множества А2. Множества А, В являются бесконечнымиРазвернутьСвернуть
3. Множества А, В являются конечными
4. Множества А, В не являются пустыми
5. Множества А, В равны
Вопрос 2. Пусть А - непустое множество всех учеников школы (A # ø), В - множество учеников пятых классов этой школы, С - множество учеников седьмых классов этой школы. Какая из записей выражает ложное утверждение? (Скобки здесь, как и в арифметических выражениях, задают порядок действий).
1. B A
2. B C A
3. B \ C A
4. (B∩A)\A = ø
5. A ( B C)
Вопрос 3. Какое из утверждений не всегда (не для любых множеств А, В, С) является верным?
1. A∩B = B∩A
2. A B = B A
3. A\B = B\A
4. A (B C) = (A B) (A C)
5. A (B C) = (A B) (A C)
Вопрос 4. Пусть N H- множество дней недели, а N Я - множество дней в январе. Какова мощность множества N H• N Я?
1. 38
2. 217
3. 365
4. 31
5. 7
Вопрос 5. Рассмотрим множество показаний часов v = {(d 1,d 2,d 3)│d 1 N, d 2 N,d 3 N,0 ≤ d1 ≤ 23, 0 ≤ d2 ≤ 59, 0 ≤ d 3 ≤ 59} Что можно утверждать относительно элемента а множества п β v ? (aп β V) .
1. a R \ N
2. a N 2
3. a R 2
4. a ≤ 59
5. a ≤ 23
Задание 2
Вопрос 1. Рассмотрим соответствие G между множествами А и В (G A B) . В каком случае соответствие называется всюду определенным?
1. пр1 G = B
2. пр2 G = B
3. пр1 G = A
4. пр2G = A
5. A=B
Вопрос 2. Допустим, что существует взаимнооднозначное соответствие G между множествами А и В. Что можно сказать об их мощностях?
1. │A│- │B│ 0
2. │A│+│B│=│G│
3. │A│+│B││G│+│G│
4. │A│-│B│= 0
5. │G│-│B││A│
Вопрос 3. Какая функция не является суперпозицией функций f1(x1,x2) = x1• x2, f2(x1,x2) = x1 • x2 + x2, f3(x1 + x2)2?
1. f 1(f 2(x 3, x 4),f 3(x1, x4))
2. f 1(x 1, x 2) + f 2(x 1, x 2)
3. f 3(f 1(x1, x 1), x 2)
4. ( f 2 (x 1, x 2) + f 1 (x3, x 4))2
5. f 1(x 1, x 2) • x3
Вопрос 4. Рассмотрим бинарное отношение R на множестве М. Что можно утверждать об R, если это отношение транзитивно?
1. Если a M, то имеет место aRa
2. Если a M, b M, то aRa тогда и только тогда, когда bRa
3. В множестве М нет элемента а такого, что выполняетс я aRa
4. Если для элементов a, b, c множества М выполняется aRb и aRc, то не выполняется aRc
5. , где - транзитивное замыкание R
Вопрос 5. Каким свойством не обладает отношение нестрогого порядка R?
1. Рефлексивность
2. Транзитивность
3. Антисимметричность
4. , где - транзитивное замыкание R
5. Симметричность
Задание 3
Вопрос 1. Какова сигнатура булевой алгебры множеств?
1. { β(),,,¯}
2. { ,¯, }
3. U2 U
4. { +,- ,•}
5. { , ¯ }
Вопрос 2. Какая операция не является ассоциативной?
1. Объединение множеств
2. Деление чисел
3. Композиция отображений
4. Умножение дробей
5. Пересечение множеств
Вопрос 3. Рассмотрим алгебру A = ( M, 1, 2, 3) и алгебру . В каком случае можно утверждать, что│M│+│N│?
1. Если имеет место гомоморфизм А в В
2. Если имеет место гомоморфизм В в А
3. Если А и В изоморфны
4. Если совпадает арность операций и , и , и
5. Если существует отображение Г:M N, удовлетворяющее условию для всех i = 1, 2, 3и всех mi, M, где I(i) - арность операции 2и
Вопрос 4. Какая операция является обязательным атрибутом полугруппы?
1. Умножение на 2
2. Извлечение квадратного корня
3. Бинарная ассоциативная
4. Композиция отображений
5. Операция отождествления
Вопрос 5. Чем является полугруппа (M; + )? (M = {0, 1, 2, 3…} = N {0})
1. Абелевой группой
2. Циклической группой
3. Свободной полугруппой
4. Моноидом
5. Циклической полугруппой
Задание 4
Вопрос 1. Какое из чисел является совершенным?
1. 28
2. 36
3. 14
4. 18
5. 3
Вопрос 2. Какое из чисел не является треугольным?
1. 6
2. 10
3. 15
4. 21
5. 27
Вопрос 3. Чему равно число сочетаний из пяти по три C35?
1. 10
2. 20
3. 9
4. 11
5. 12
Вопрос 4. Какая из формул, содержащих число сочетаний, не верна?
1. C0n + C1n + C2n + … + Cnn = 2n
2.
3. C36 = C35 + C26
4. C37 = C47
5.
Вопрос 5. Предположим, что мы много раз бросаем пару игральных костей (кубиков с цифрами от 1 до 6 на гранях) и суммируем две выпавшие при каждом бросании цифры. Какую из перечисленных ниже сумм мы будем получать чаще других?
1. 1
2. 7
3. 6
4. 11
5. 12
Задание 5
Вопрос 1. Каким был первый наиболее важный шаг в расшифровке клинописных надписей, сделанный Мюнтером и Гротефендом?
1. Подбор наиболее вероятной версии перевода для часто встречающихся в клинописных надписях слов
2. Подбор букв из известных языков, похожих на буквы клинописи
3. Подбор наиболее близкого из современных языков
4. Ввод клинописных надписей в компьютер
5. Постановка в соответствие каждой букве клинописи некоторого натурального числа
Вопрос 2. Сколько всего разных пар можно составить из 4-х букв? (Сколько различных двухзначных чисел можно образовать, используя только цифры 1, 2, 3, 4 ?)
1. 4
2. 8
3. 16
4. 20
5. 2
Вопрос 3. Какому условию удовлетворяют все вырожденные коды?
1. Одно слово (один объект, например, аминокислота) кодируется (может быть представлен или определен) не одним, а несколькими сочетаниями символов (кодонами)
2. Условию линейности
3. Условию взаимнооднозначного соответствия между кодами и кодируемыми объектами (состояниями)
4. Это коды – неперекрывающиеся
5. Эти коды – перекрывающиеся
Вопрос 4. Какое высказывание не соответствует коду ДНК?
1. Существуют кодоны, которым не соответствует ни одна аминокислота
2. Этот код – линейный
3. Этот код – невырожденный
4. Этот код – неперекрывающийся
5. Этот код – триплетный
Вопрос 5. Какую важнейшую комбинаторную задачу решил 17 февраля 1869 г. Дмитрий Иванович Менделеев?
1. Задачу об обходе Кенигсбергских мостов
2. Задачу составления периодической системы химических элементов
3. Задачу расшифровки крито-микенского письма
4. Задачу об одновременном выпадании двух шестерок при бросании пары игральных костей
5. Задачу об оптимальном содержании спирта в крепких алкогольных напитках
Задание 6
Вопрос 1. Какое условие (предположение) характерно для всех комбинаторных задач?
1. В комбинаторных задачах всегда идет речь только о конечных множествах
2. В комбинаторных задачах никогда не используется перебор вариантов
3. В комбинаторных задачах всегда используется понятие бесконечности
4. Комбинаторные задачи всегда приводят к дифференциальным уравнениям
5. Комбинаторные задачи никогда не требуют составить алгоритм
Вопрос 2. Как быстрее решить задачу поиска (построения) магического квадрата третьего порядка, без использования компьютера?
1. С помощью геометрии Лобачевского
2. С помощью геометрии Евклида
3. С помощью дифференцирования или интегрирования
4. С помощью перебора и анализа всех квадратных матриц размером 3 на 3
5. Определив сумму по каждой из его строк, столбцов и диагоналей и составив все возможные тройки чисел, дающие эту сумму
Вопрос 3. Сколько всего существует способов расположения чисел 1, 2, 3, 4, 5, 6, 7, 8, 9 в виде магического квадрата? (Под магическим квадратом следует понимать матрицу, сумма элементов которой по каждому столбцу, строке и диагонали одна и та же)
1. 1
2. 2
3. 4
4. 8
5. 12
Вопрос 4. Сколько способов (вариантов) расстановки восьми ферзей на шахматной доске так, чтобы ни один из них не мог взять другого, существует?
1. 1
2. 4
3. 12
4. 56
5. 92
Вопрос 5. Какое максимальное число коней, не бьющих друг друга, можно расставить на шахматной доске?
1. 16
2. 30
3. 32
4. 36
5. 24
Задание 7
Вопрос 1. Для какого числа n не может быть построена пара ортогональных квадратов?
1. n = 4
2. n = 5
3. n = 6
4. b = 10
5. n =14
Вопрос 2. Что называют блок-схемой в комбинаторике?
1. Таблицу всевозможных вариантов комбинирования элементов некоторого множества
2. Размещение элементов заданных множеств в блоки, подчиненное некоторым условиям относительно появления элементов и их пар
3. Квадратную матрицу, элементами которой являются пары букв
4. Матрицу, элементами которой являются тройки чисел
5. Расположение букв в виде прямоугольника размерами 6n + 3 на 3n + 1, где n – натуральное число
Вопрос 3. Как формулируется принцип Дирихле?
1. Когда на шахматную доску, имеющую 8 горизонталей, ставят 10 ферзей, то хотя бы одна пара будет бить друг друга
2. Если некоторые из n точек плоскости соединены отрезками, то всегда найдутся две точки, из которых выходит поровну отрезков
3. Когда на шахматную доску, имеющую 8 горизонталей, ставят 9 ферзей, то хотя бы одна пара ферзей будет бить друг друга
4. Если в n ящиков положено более, чем n предметов, то хотя бы в одном ящике лежат два или более предметов
5. Если в зале находится n человек, то хотя бы двое из них имеют одинаковое число знакомых среди присутствующих в зале
Вопрос 4. При попарном соединении какого числа точек отрезками двух цветов нельзя гарантировать, что найдутся три точки, являющиеся вершинами одноцветного треугольника?
1. 5
2. 6
3. 7
4. 8
5. 9
Вопрос 5. Как можно сформулировать теорему Ф. Холла о деревенских свадьбах?
1. Если для любых k юношей деревни пересечение множеств их подруг содержит по крайней мере k девушек, то каждый юноша деревни может выбрать себе жену из числа своих подруг
2. В деревне относительно каждого юноши и девушки известно, дружат они или нет. Если для k юношей объединение множеств их подруг содержит по крайней мере k девушек, то каждый юноша этой деревни сможет выбрать себе жену из числа своих подруг
3. Если для любых k юношей деревни объединение множеств их подруг содержит менее k девушек, то каждый юноша этой деревни сможет выбрать себе жену из числа своих подруг, если они до этого момента не выйдут замуж
4. Если в деревне n юношей и k девушек, то все юноши смогут найти себе невесту в своей деревне, если
5. Пусть в каком-нибудь множестве Х выделены подмножества Х 1,…, Хn. Для того, чтобы в Х можно было выбрать n различных элементов a1,…, an таких, что a1 Х 1,…, an Хn, , необходимо и достаточно чтобы объединение любых k заданных подмножеств содержало не менее k элементов
Задание 8
Вопрос 1. Сколько существует двухзначных чисел, не содержащих цифры 0 и 1?
1. 20
2. 99
3. 81
4. 64
5. 72
Вопрос 2. Сколько словарей надо издать, чтобы можно было непосредственно (пользуясь только одним словарем) выполнять переводы с любого из пяти языков (например, русского, французского, немецкого, итальянского, английского) на любой другой из этих пяти?
1. 20
2. 25
3. 16
4. 55
5. 10
Вопрос 3. Каково число размещений с повторениями из n по k?
1. k n
2. nk
3. k n - 1
4.
5.
Вопрос 4. Сколько всего разных символов (букв, цифр, знаков препинания . ) можно закодировать (представить) кортежами из точек и тире, имеющими длину от 1 до 5 ?
1. 30
2. 32
3. 126
4. 64
5. 62
Вопрос 5. Сколько всего кортежей вида a1, a 2, …, a nможно образовать, если в качестве ai(1 ≤ i ≤ n) может быть взят любой из элементов множества Х i , мощность которого равна mi?
1. (m1 + m2 + … + m n)n
2.
3. m1 • m2 • … • m n
4. (m1 + m2 + … + m n)2
5.
Вопрос 5. В городе А телефонные номера четырехзначные и состоят из гласных букв. Причем, номера начинающиеся с букв А или Я принадлежат юридическим лицам. Сколько физических лиц могут быть абонентами телефонной сети этого города?
1. 10000
2. 38
3. 8000
4. 0,008
5. 8100
Задание 9
Вопрос 1. Сколько размещений без повторений из 10 элементов по 3 существует?
1. 100
2. 720
3. 999
4. 1000
5. 504
Вопрос 2. Сколькими способами можно поставить две ладьи разных цветов на шахматной доске (8x 8) так, чтобы они не били друг друга?
1. 64 • 32
2. 64 • 36
3. 64 • 56
4. 64 • 49
5. 64 • 48
Вопрос 3. Сколько разных кортежей букв длины 7, можно образовать перестановкой букв в слове “сколько”?
1. 7!
2. 420
3. 630
4. 1260
5. 2520
Вопрос 4. Допустим, что для посадки нам требуется 9 деревьев, а в магазине есть саженцы деревьев пяти сортов (пород). Из скольких вариантов (составов) покупки 9 деревьев нам придется выбирать?
1. Из 120
2. Из 240
3. Из 715
4. Из 672
5. Из 849
Вопрос 5. Сколько подмножеств, содержащих m элементов, у множества мощности k ( k m)?
1.
2.
3.
4.
5.
Задание 10
Вопрос 1. Какая из формул не является верной для любых натуральных чисел k, n, удовлетворяющих условию k n, k 1?
1.
2.
3.
4. Ckn = Cnn - k
5. C0n + C1n + … + Ckn = 2n
Вопрос 2. При каком условии формула перекрытий принимает вид N’ = N0 –C1kN1 + C2kN2 - … + (-1)kCkkNk ?
1. N0 = n(U)
2. N1 = N2 = …N k
3. Если число эквивалентов пересечения любых r множеств N y зависит только от числа r(1 ≤ r ≤ k)
4. n(A1A2…A k) = Nk
5. при
Вопрос 3. Рассмотрим передачу двоичных кодовых сообщений фиксированной длины. При каком условии можно правильно восстановить сообщение, если известно, что ошибка допущена в одном разряде?
1. Если расстояние между ближайшими кодовыми словами не превосходит 2
2. Если расстояние между ближайшими кодовыми словами не менее 3
3. Если длина передаваемого слова нечетна
4. Если сумма единиц в этом сообщении четна
5. Если вместе со словом будет передана контрольная сумма его единичных разрядов
Вопрос 4. Что означает запись n(A k) в формуле перекрытий?
1. Мощность множества A k
2. n-й элемент множества A k
3. Множество элементов N’ в U, не принадлежащих A k
4. Мощность множества элементов в U, не принадлежащих A k
5. Число слагаемых в формуле перекрытий
Вопрос 5. В студенческой группе всего 45 студентов. Из них в футбольной секции занимаются 31 человек, в шахматной – 28, в баскетбольной – 30. Одновременно в футбольной и шахматной секциях занимаются 20 студентов этой группы, в баскетбольной и футбольной – 22 студента, в шахматной и баскетбольной – 18 студентов. Кроме того известно, что 12 студентов этой группы занимаются одновременно в трех упомянутых секциях. Сколько студентов группы не занимается ни в одной из упомянутых секций?
1. 1
2. 2
3. 3
4. 4
5. 5
Задание 11
Вопрос 1. Укажите математическую модель для задачи: Кондитерская фабрика для производства трех видов карамели А, В и С использует три вида основного сырья: сахарный песок, патоку и фруктовое пюре. Нормы расхода сырья каждого вида на производства 1 т карамели данного вида приведены в таблице. В ней же указано общее количество сырья каждого вида, которое может быть использовано фабрикой, а также приведена прибыль от реализации 1 т карамели данного вида.
Вид сырья Нормы расхода сырья (т) на 1 т карамели Общее количество сырья (т)
А В С
Сахарный песок 0.8 0.5 0.6 800
Патока 0.4 0.4 0.3 600
Фруктовое пюре - 0.1 0.1 120
Прибыль от реализации 1 т продукции (руб) 108 112 126
Найти план производства карамели, обеспечивающий максимальную прибыль от ее реализации.
1. Найти минимум функции F = - 108XA -112XB – 126 XC при условиях:
08.XA + 0.5XB + 0.6XC ≤ 800
0.4X A + 0.4XB + 0.3XC ≤ 600
0.1XB+ 0.1XC≤ 120
XA ≥ 0; XB ≥ 0; XC ≥ 0
2. Найти максимум функции F = 108XA + 112XB + 126XCпри условиях:
08.XA + 0.5XB + 0.6XC ≤ 800
0.4X A + 0.4XB + 0.3XC ≤ 600
0.1XB+ 0.1XC≤ 120
XA ≥ 0; XB ≥ 0; XC ≥ 0
3. Найти минимум функции F = 0.8XA + XB + 0.3XC при условиях:
0.4X A + 0.4XB + 0.3XC ≥ 600
0.1XB+ 0.1XC≥ 120
XA ≥ 0; XB ≥ 0; XC ≥ 0
4. Найти максимум функции F = XA + XB + XCпри условиях:
08.XA + 0.5XB + 0.6XC ≥ 800
0.4X A + 0.4XB + 0.3XC ≥ 600
0.1XB+ 0.1XC≥ 120
XA ≥ 0; XB ≥ 0; XC ≥ 0
5. Найти максимум функции F = 800 XA + 600 XB + 120 XC при условиях:
08.X A + 0.4XB ≤108
0.5X A + 0.4XB + 0.1XC ≤ 112
0.6X A + 0.3XB + 0.1XC ≤ 126
XA ≥ 0; XB ≥ 0; XC ≥ 0
Вопрос 2. Укажите математическую модель для задачи: При откорме животных каждое животное ежедневно должно получать не менее 60 единиц питательного вещества А, не менее 50 единиц вещества В и не менее 12 единиц вещества С. Указанные питательные вещества содержат три вида корма. Содержание единиц питательных веществ в 1 кг каждого из видов корма приведено в следующей таблице:
Питательные вещества Количество единиц питательных веществ в 1 кг корма вида
I II III
А 1 3 4
В 2 4 2
С 1 4 3
Составить дневной рацион, обеспечивающий получение необходимого количества питательных веществ при минимальных денежных затратах, если цена 1 кг корма I вида составляет 9 копеек, корма II вида – 12 копеек и корма III вида – 10 копеек.
1. Найти максимум функции F = x1 + x2 + x3 при условиях:
x1 + 3x2 + 4x3 ≤ 60
2x1 + 4x2 + 2x3 ≤ 50
x1 + 4x2 + 3x3 ≤ 12
x1 ≥ 0; x2 ≥ 0; x3 ≥ 0
2. Найти минимум функции F = 9x1 + 12x2 + 10x3при условиях:
x1 + 3x2 + 4x3 ≥60
2x1 + 4x2 + 2x3 ≥ 50
x1 + 4x2 + 3x3 ≥ 12
x1 ≥ 0; x2 ≥ 0; x3 ≥ 0
3. Найти минимум функции F = 9x1 + 12x2 + 10x3 при условиях:
x1 + 3x2 + 4x3 = 60
2x1 + 4x2 + 2x3 = 50
x1 + 4x2 + 3x3 = 12
x1 ≥ 0; x2 ≥ 0; x3 ≥ 0
4. Найти максимум функции F = 60x1 + 50x2 + 12x3 при условиях:
x1 + 2x2 + x3 ≤ 9
3x1 + 4x2 + 4x3 ≤12
4x1 + 2x2 + 3x3≤ 10
x1 ≥ 0; x2 ≥ 0; x3 ≥ 0
5. Найти минимум функции F = 9x1 + 12x2 + 10x3 при условиях:
x1 + 3x2 + 4x3 ≤ 60
2x1 + 4x2 + 2x3 ≤50
x1 + 4x2 + 3x3 ≤ 12
x1 ≥ 0; x2 ≥ 0; x3 ≥ 0
Вопрос 3. Укажите математическую модель для задачи: В трех пунктах отправления сосредоточен однородный груз в количествах 420, 380, 400 т. Этот груз необходимо перевезти в три пункта назначения в количествах, соответственно равных 260, 520, 420 т. Стоимости перевозок 1 т груза из каждого пункта отправления в каждый пункт назначения известны и задаются матрицей (в условных единицах):
, где
Найти план перевозок, обеспечивающий вывоз имеющегося в пунктах отправления и завоз необходимого в пункты назначения груза при минимальной общей стоимости перевозок.
1. Найти минимум функции при условиях:
x 1 + x 2 + x3 = 260
x 4 + x 5 + x6 = 520
x 7 + x 8 + x 9 = 420
x 1 + x 4 + x 7 = 420
x 2 + x 5 + x 8 = 380
x 3 + x 6 + x 9 = 400
x k ≥ 0 (k = 1,9)
2. Найти минимум функции F = 2 x1 + 4 x2 + 3 x3 + 7 x4 + 5 x5 + 8x6 + 6 x7 + 9 x8 + 7 x9 при условиях:
x 1 + x 2 + x3 = 260
x 4 + x 5 + x6 = 520
x 7 + x 8 + x 9 = 420
x 1 + x 4 + x 7 ≤ 420
x 2 + x 5 + x 8 ≤ 380
x 3 + x 6 + x 9 ≤ 400
x k ≥ 0 x2 ≥ 0 ,…, x9 ≥ 0.
3. Найти минимум функции F = 2 x1 + 7 x2 + 6 x3 + 4 x4 + 5 x5 + 9x6 + 3 x7 + 8 x8 + 7 x9 при условиях:
x 1 + x 2 + x3 = 260
x 4 + x 5 + x6 = 520
x 7 + x 8 + x 9 = 420
x 1 + x 4 + x 7 ≤ 420
x 2 + x 5 + x 8 ≤ 380
x 3 + x 6 + x 9 ≤ 400
x k ≥ 0 x2 ≥ 0 ,…, x9 ≥ 0.
4. Найти минимум функции F = 2 x1 + 4 x2 + 3 x3 + 7 x4 + 5 x5 + 8x6 + 6 x7 + 9 x8 + 7 x9 при условиях:
x 1 + x 2 + x3 ≤ 260
x 4 + x 5 + x6≤520
x 7 + x 8 + x 9 ≤ 420
x 1 + x 4 + x 7 ≤ 420
x 2 + x 5 + x 8 ≤ 380
x 3 + x 6 + x 9 ≤ 400
x 1 ≥ 0 x2 ≥ 0 ,…, x9 ≥ 0.
5. Найти минимум функции F = 2 x1 + 4 x2 + 3 x3 + 7 x4 + 5 x5 + 8x6 + 6 x7 + 9 x8 + 7 x9 при условиях:
x 1 + x 2 + x3 = 420
x 4 + x 5 + x6 = 380
x 7 + x 8 + x 9 = 400
x 1 + x 4 + x 7 = 260
x 2 + x 5 + x 8 = 520
x 3 + x 6 + x 9 = 420
x 1 ≥ 0, x2 ≥ 0 ,…, x9 ≥ 0.
Вопрос 4. Укажите неэквивалентную форму записи для задачи:
1. F = 2x1 + x2 - x3 min
2x1 – x2 + 6x3 ≤ 12;
3x1 + 5x2 -12x3 = 14
-3x1 + 6x2 +4x3 ≤ 18
x1, x2 ,x3 ≥ 0
2. F = -2x1 – x2 + x3 min
- 2x1 + x2 - 6x3 ≥ - 12;
3x1 + 5x2 -12x3 = 14
3x1 - 6x2 - 4x3 ≥ -18
x1, x2 ,x3 ≥ 0
3. F = - 2x1 - x2 + x3 min
2x1 – x2 + 6x3 + x4 = 12;
3x1 + 5x2 -12x3 = 14
-3x1 + 6x2 + 4x3 + x5 =18
x1, x2 ,…,x5 ≥ 0
4. F = 2x1 + x2 - x3 min
2x1 - x2 + 6x3 ≤ 12;
3x1 + 5x2 -12x3 ≤ 14
- 3x1 - 5x2 + 12x3 ≤ - 14
-3x1 + 6x2 + 4x3 ≤ 18
x1, x2 ,x3 ≥ 0
5. F = - 2x1 - x2 + x3 min
2x1 - x2 + 6x3 ≤ 12;
3x1 + 5x2 -12x3 ≤ 14
-3x1 - 5x2 + 12x3 ≥ - 14
-3x1 + 6x2 + 4x3 ≤ 18
x1, x2 ,x3 ≥ 0
Вопрос 5. Укажите стандартную форму записи для задачи
F = - 2x1 + x2 + 5x3 min
4x1 + 2x2 + 5x3 ≤ 12;
6x1 - 3x2 +4x3 = 18
3x1 + 3x2 - 2x3 ≥ 16
x1, x2 ,x3 ≥ 0
1. F =2x1 - x2 -5x3 min
4x1 + 2x2 + 5x3 ≤ 12;
6x1 - 3x2 + 4x3 = 18
3x1 + 3x2 - 2x3 ≥ 16
x1, x2 ,x3 ≥ 0
2. F = -2x1 + x2 +5x3 min
4x1 + 2x2 + 5x3 ≤ 12;
6x1 - 3x2 + 4x3 = 18
-3x1 - 3x2 + 2x3 ≤ - 16
x1, x2 ,x3 ≥ 0
3. F = -2x1 + x2 +5x3 min
4x1 + 2x2 + 5x3 ≤ 12;
6x1 - 3x2 + 4x3 ≤18
-6x1 + 3x2 - 4x3 ≤ - 18
-3x1 – 3x2 + 2x3 ≤- 16
x1, x2 ,x3 ≥ 0
4. F = -2x1 + x2 +5x3 min
4x1 + 2x2 + 5x3 + x4 = 12;
6x1 - 3x2 + 4x3 = 18
3x1 + 3x2 - 2x3 – x5 = 16
x1, x2 ,x3 x4, x5 ≥ 0
5. F = 2x1 - x2 -5x3 min
-4x1 - 2x2 - 5x3 ≥12;
6x1 - 3x 2 - 4x3 ≥ 18
-6x1 + 3x 2 + 4x3 ≥ –18
3x1 + 3x2 - 2x3 ≥ 16
x1, x2 ,x3 x4, x5 ≥ 0
Задание 12
Вопрос 1. На каком из рисунков дана верная геометрическая интерпретация решения задачи линейного программирования, обеспечивающего максимум целевой функции F.
Ответ 2
Вопрос 2. На каком из рисунков дана верная геометрическая интерпретация решения задачи линейного программирования, обеспечивающего минимум целевой функции F.
Ответ 4
Вопрос 3. Указать эквивалентную форму записи задачи, допускающую геометрическую интерпретацию решений в виде многоугольника: F = - 16x1 – x2 + x3 + 5x4 + 5x5 max
2x1 + x2 + x3 + = 10
- 2x1 + 3x2 + x4 = 6
2x1 + 4x2 – x5 = 8
X1, x2, x3, x4, x5 ≥ 0
1. F = - 16x1 – x2 max
2x1 + x2 ≤ 10
- 2x1 + 3x2 ≤ 6
2x1 + 4x2 ≥ 8
x1, x2 ≥ 0
2. F = - 16x1+ 19x2 + x3 + 5x4 max
2x1 + x2 + x3 = 10
- 2x1 + 3x2 + x4 = 6
2x1 + 4x2 ≥ 8
x1, x2, x3,x4 ≥ 0
3. F = - 8x1+ 18x2 + 5x4 max
2x1 + x2 ≤10
- 2x1 + 3x2 + x4 = 6
2x1 + 4x2 ≥ 8
x1, x2,x4 ≥ 0
4. F = - 16x1-x2 + x3 + 5x4 + 5x5 max
2x1 + x2 + x3 ≤10
- 2x1 + 3x2 + x4 ≤ 6
2x1 + 4x2 – x5 ≤ 8
x1, x2, x3,x4, x5 ≥ 0
5. F = 2x1+3x2 max
2x1 + x2 ≤10
- 2x1 + 3x2 ≤ 6
2x1 + 4x2 ≥ 8
x1, x2, ≥ 0
Вопрос 4. Используя геометрическую интерпретацию, найдите решение задачи:
F = x1+x2 max
x1 + 2x2 ≤14
- 5x1 + 3x2 ≤ 15
4x1 + 6x2 ≥ 24
x1, x2, ≥ 0
1. Fmax = 12 при x*1 = 10, x*2 = 2
2. F max = 10 при x*1 = 8, x2* = 2
3. F max = 11 при x*1 = 10, x2* = 1
4. F max = 15 при x*1 =7, x2* = 8
5. 5. F max = 14 при x*1 = 14, x2* = 0
Вопрос 5. Используя геометрическую интерпретацию, найдите решение задачи:
F =- 2x1+x2 max
3x1 - 2x2 ≤12
- x1 + 2x2 ≤ 8
2x1 + 3x2 ≥ 6
x1, x2, ≥ 0
1. Fmax = - 10 при x*1 = 5, x*2 = 0
2. Fmax = 132 при x*1 = 10, x*2 = 8
3. Fmax = - 15 при x*1 = 8, x*2 = 1
4. Fmax = - 11 при x*1 = 10, x*2 = 9
5. Fmax = - 9 при x*1 = 5, x*2 =1
Задание 13
Вопрос 1. Указать максимальное значение целевой функции для задачи: F = 3x1 + 2x5 – 5x6 max
2x1 + x2 – 3x5 + 5x6 = 34
4x1 + x3 + 2x5 - 4x6 = 28
- 3x1 + x4 - 3x5 + 6x6 = 24
x1, x2,…, x6 ≥ 0
1. Fmax = 28
2. Fmax =30
3. Fmax = 26
4. Fmax = 20
5. Fmax = 34
Вопрос 2. Указать решение задачи:
F = ¯3x1 + 2x3 – 6x6 max
2x1 + x2 – 3x3 + 6x6 = 18
- 3x1 + 2x3 + x4 – 2x6 =24
x1 + 3x3 + x5 – 4x6 = 36
x j ≥ 0 (j =1,¯6)
1. x * = (12; 3; 0; 18; 30; - 18)
2. x * = (19; 0; 0; 51; 27; 0)
3. x * = (10; 22; 8; 3; 8; 2)
4. x * = (18; 0; 6; 66; 0; 0)
5. x * = (36; 0;24; 90; - 60; 3)
Вопрос 3. Указать решение задачи:
F = 2x1 + 3x2 –x4 max
2x1 -x2 – 2x4 + x5 = 16
3x1 + 2x2 + x3 – 3x4 =18
- x1 + 3x2 + 4x4 + x6 = 24
x j ≥ 0 (j =1,¯6)
1. x * = (1; 6; 6; 1; 22;3)
2. x * = (5; 0;9; 2; 10;21)
3.
4. x * = (1; 7; 1; 0; 21;4)
5. x * = (0;8;2; 0; 24;0)
Вопрос 4. Указать решение задачи:
F = 8x2 + 7x4 +x6 max
x1 -2x2 – 3x4 - 2x6 = 12
4x2 + x3 - 4x4 – 3x6 =12
5 x2 + 5x4 + x5 + x6 = 25
x j ≥ 0 (j =1,¯6)
1. x * = (32; 2; 27; 2; 0;5)
2. x * = (24; 3; 8; 2; 0; 0)
3. x * = (25; 1; 23; 3; 4; 1)
4. x * = (23; 4; 0; 1; 0;0)
5. x * = (62; 0;87; 0; 0;25)
Вопрос 5. Указать решение задачи:
F = 2x1 + x2 – x3 max
x1 + x2 + x3 = 5
2x1 + 3x2 + x4 = 13
xf ≥ 0 (f = 1,¯4)
1. x * = (5; 0; 0; 3;), Fmax = 10
2. x * = (1; 2; 2; 5;), Fmax = 11
3. x * = (6; 0; - 1; 1;), Fmax = 13
4. x * = (0; 5; 0; - 2;), Fmax = 10
5. x * = (3; 1; 1; 4;), Fmax =6
Задание 14
Вопрос 1. Какая из задач является двойственной по отношению к задаче:
F = x1 -2x2+ 5x1 max
2x1 + 2x2 + 4x3 ≤ 18
2x1 + x2 – 3x3 ≤ 20
5x1 – 3x2 + 6x3 ≥ 19
x1, x2, x3 ≥
1. F* = y1 – 2y2 +5y3 min 2y1 + 2y2 + 5y3 ≥ 18
2y1 + y2 – 3y3 ≥ 20
4y1 – 3y2 + 6y3 ≥ 19
y1, y2, y3 ≥ 0
2. F* = 18y1 – 20y2 -19y3 min 2y1 + 2y2 + 5y3 ≥ 1
2y1 + y2 + 3y3 ≥ - 2
4y1 – 3y2 - 6y3 ≥ 5
y1, y2, y3 ≥ 0
3. F* = 18 y1 + 20y2 +19y3 min 2y1 + 2y2 + 5y3 ≤ 1
2y1 + y2 – 3y3 ≤ - 2
4y1 – 3y2 + 6y3 ≥ 5
y1, y2, y3 ≥ 0
4. F* = 18 y1 + 20y2 -19y3 min 2y1 + 2y2 + 5y3 ≥ 1
2y1 + y2 – 3y3 ≥ - 2
4y1 – 3y2 + 6y3 ≥ 5
y1, y2, y3 ≥ 0
5. F* = y1 - 2y2 + 5x1 min 2y1 + 2y2 + 4y3 ≥ 18
2y1 + y2 – 3y3 ≥ 20
5y1 – 3y2 + 6y3 ≥ 19
y1, y2, y3 ≥ 0
Вопрос 2. Какая из задач является двойственной по отношению к задаче:
F = 3x1 + 3x2 – 4x3 max
2x1 + x2 – 3x3 ≥ 18
4x1 – 5x3 ≤12
3x1 – 2x2 + x3 ≥ 14
x1, x2, x3 ≥ 0
1. F* = 3y1 + 3y2 – 4y3 min
2y1 + y2 – 3y3 ≥ 18
4y1 - 5y3 ≥ 12
3y1 - 2y2 +y3 ≥ 14
y1, y2, y3 ≥ 0
2. F* = 3y1 + 3y2 – 4y3 min
2y1 + 4y2 + 3y3 ≥ 18
y1 – y2 - 2y3 ≤ 12
- 3y1 - 5y2 + y3 ≥ 14
y1, y2, y3 ≥ 0
3. F* = 18y1 + 12y2 + 14y3 min
2y1 + 4y2 + 3y3 ≥ 3
y1 – y2 - 2y3 ≥ 3
- 3y1 - 5y2 + y3 ≥ - 4
y1, y2, y3 ≥ 0
4. F* = 18y1 + 12y2 - 14y3 min
- 2y1 + 4y2 -3y3 ≥ 3
- y1 + 2y3 - 2y3 ≥ 3
3y1 - 5y2 - y3 ≥ - 4
y1, y2, y3 ≥ 0
5. F* = 18y1 + 12y2 + 14y3 min
2y1 + 4y2 + 3y3 ≥ 3
y1 - 2y3 ≤ 3
- 3y1 - 5y2 + y3 ≥ - 4
y1, y2, y3 ≥ 0
Вопрос 3. Какая из задач является двойственной по отношению к задаче:
F = - 3x1 + 4x2 – 6x3 max
2x1 + 3x2 – x3 ≥ 8
-3x1 + 2x2 – 2x3 = 10
5x1 – 4x2 + x3 ≥ 7
x1, x2, x3 ≥ 0
1. F* = -3y1 + 4y2 - 6y3 min
2y1 + 3y2 - y3 ≥ 8
- 3y1 + 2y2 - 2y3 ≥ 10
5y1 - 4y2 + y3 ≥ 7
y1, y2, y3 ≥ 0
2. F* = -3y1 + 4y2 - 6y3 min
2y1 - 3y2 +5y3 ≥ 8
3y1 + 2y2 - 4y3 ≥ 10
-y1 - 2y2 + y3 ≥ 7
y1, y2, y3 ≥ 0
3. F* = 8y1 + 10y2 + 7y3 min
2y1 + 3y2 - y3 ≥ - 3
- 3y1 + 2y2 - 2y3 ≥ 4
5y1 - 4y2 + y3 ≥ - 6
y1, y2, y3 ≥ 0
4. F* = 8y1 + 10y2 + 7y3 min
2y1 - 3y2 + 5y3 ≤ - 3
3y1 + 2y2 - 4y3 ≤ 4
-y1 - 2y2 + y3 ≤ - 6
y1, y2, y3 ≥ 0
5. F* = 8y1 + 10y2 + 7y3 min
2y1 + 3y2 - y3 ≥- 3
- 3y1 + 2y2 - 2y3 ≥ 4
5y1 - 4y2 + y3 ≥ - 6
y1, y2, y3 ≥ 0
Вопрос 4. Исходная задача линейного программирования имеет оптимальный план со значением целевой функции Fmax = 10. Какое из чисел является значением целевой функции F*min двойственной задачи?
1. 0
2. 5
3. 10
4. 20
5.
Вопрос 5. Геометрическая интерпретация решения исходной задачи линейного программирования, состоящей в максимизации целевой функции, приведена на рисунке:
Укажите решение двойственной задачи линейного программирования.
1. x* = (0;2)
2. x* = (2; 0)
3. x* = (28; 1; 0; 0)
4. x* - пустоемножество
5. x * = (2; 0; 0; 5)
Задание 15
Вопрос 1. Используя двойственный симплекс метод, найдите решение задачи:
F = - 4x1 - 7x2 – 8x3 – 5x4 max
x1 + x2 + 2x4 ≥ 4
2x1 + x2 + 2x3 ≥ 6
x1, x2, x3, x4 ≥ 0
1. при
2. при
3. F max = 23 при x * = ( 5; 1; - 2)
4. при
5. F max = -36 при x * = ( 2; 0; 1; 2)
Вопрос 2. Используя двойственный симплекс метод, найдите решение задачи:
F = 5x1 + 6x2 +x3 + x4 min
1.5 x1 + 3x2 – x3 + x4 ≥ 18
3x1 + 2x3 - 4x4 ≥ 24
x1, x2, x3, x4 ≥ 0
1.
2. при
3. Fmin = 52 при x* = (8; 2; 0; 0)
4. Fmin = 52 при x* = (2; 7; 3; - 3)
5. Fmin = 32 при x* = (8; 4; 12; 6)
Вопрос 3. Используя двойственный симплекс метод, найдите решение задачи:
F = x1 + 3x2 +4x3 + 2x4 min
x1 - x2 + 4x3 + 5x4 ≥ 27
2x1 + 3x2 – x3 + 4x4 ≥ 24
x1, x2, x3, x4 ≥ 0
1. Fmin = 21 при x* = (0; 3; 0; 6)
2. Fmin =53 при x* = (5; 8; 5; 2)
3. Fmin = 59 при x* = (28; 1; 0; 0)
4. Fmin = 12 при x* = (2; 0; 0; 5)
5. Fmin = 11 при x* = (1; 0; 0; 6)
Вопрос 4. Укажите математическую модель для транспортной задачи. На трех складах оптовой базы сосредоточен однородный груз в количествах 160, 60, 80 единиц. Этот груз необходимо перевезти в четыре магазина. Каждый из магазинов должен получить соответственно 120, 40, 60 и 80 единиц груза. Тарифы перевозок единицы груза из каждого из складов во все магазины задаются матрицей
2 3 4 3
C = 5 3 1 2
2 1 4 2
Составить такой план перевозок, при котором общая стоимость перевозок является минимальной.
1. F = 2x11 + 3x12 + 4x13 + 3x14 + 5x21 + 3x22 + x23 +2x24 + 2x31 + x32 + 4x33 + 2x34 min
x11 + x12 + x13 + x14 = 160
x21 + x22 + x23 + x24 = 60
x31 + x32 + x33 + x34 = 80
x11 + x21 + x31 = 120
x12 + x22 + x32 = 40
x13 + x23 + x33 = 60
x14 + x24 + x34 = 80
x if ≥ 0, i = 1,¯3, f = 1,¯4
2. F = 2x11 + 5x12 + 2x13 + 3x21 + 3x22 + x23 + 4x31 +x32 + 4x33 + 3x41 + 2x42 + 2x43 min
x11 + x12 + x13 + x14 = 160
x21 + x22 + x23 + x24 = 60
x31 + x32 + x33 + x34 = 80
x11 + x21 + x31 = 120
x12 + x22 + x32 = 40
x13 + x23 + x33 = 60
x14 + x24 + x34 = 80
x if ≥ 0, i = 1,¯3, f = 1,¯4
3. F = 2x11 + 5x12 + 2x13 + 3x21 + 3x22 + x23 + 4x31 +x32 + 4x33 + 3x41 + 2x42 + 2x43 min
x11 + x21 + x31 + x41 ≤ 160
x12+ x22 + x32 + x42 ≤ 60
x13 + x23 + x33 + x34 ≤ 80
x11 + x12 + x13 ≤ 120
x21 + x22 + x23 ≤ 40
x31 + x32 + x33 ≤60
x41 + x42 + x43 ≤ 80
x if ≥ 0, i = 1,¯4, f = 1,¯3
4. F = 2x11 + 3x12 + 4x13 + 3x14 + 5x21 + 3x22 + x23 +2x24 + 2x31 + x32 + 4x33 + 2x34 min
x11 + x12 + x13 + x14 ≤ 160
x21+ x22 + x23 + x24 ≤ 60
x31 + x32 + x33 + x34 ≤ 80
x11 + x21 + x31 ≤ 120
x12 + x22 + x32 ≤ 40
x13 + x23 + x33 ≤60
x14 + x24 + x34 ≤ 80
x if ≥ 0, i = 1,¯3, f = 1,¯4
5. F = 2x11 + 3x12 + 4x13 + 3x14 + 5x21 + 3x22 + x23 +2x24 + 2x31 + x32 + 4x33 + 2x34 min
x11 + x12 + x13 + x14 = 160
x21+ x22 + x23 + x24 = 60
x31 + x32 + x33 + x34 = 80
x if ≥ 0, i = 1,¯3, f = 1,¯4
Вопрос 5. Укажите математическую модель для транспортной задачи. Три предприятия данного экономического района могут производить некоторую однородную продукцию в количествах, соответственно равных 180, 350 и 20 единиц. Эта продукция должна быть поставлена пяти потребителям в количествах, соответственно равных 110, 90, 120, 80 и 150 единиц. Затраты, связанные с производством и доставкой единицы продукции, задаются матрицей:
Составить такой план прикрепления потребителей к поставщикам, при котором общие затраты являются минимальными.
1. F = 7x11 + 12x12 + 4x13 + 6x14 + 5x15 + x21 + 8x22 +6x23 + 5x24 + 3x25 + 6x31 + 13x32 + 8x33 + 7x34 + 4x35 min
x11 + x12 + x13 + x14 + x15 ≤ 180
x21+ x22 + x23 + x24 + x25 ≤ 350
x31 + x32 + x33 + x34 + x35 ≤ 20
x11 + x21 + x31 ≤ 110
x12 + x22 + x32 ≤ 90
x13 + x23 + x33 ≤120
x14 + x24 + x34 ≤ 80
x15 + x25 + x35 ≤ 150
x if ≥ 0, i = 1,¯3, f = 1,¯5
2. F = 7x11 + x12 + 6x13 + 12x14 + 8x22 +13 x23 + 4x31 +6x32 + 8x33 + 6x41 + 5x42 + 7x43 + 5x51 + 3x52 + 4x53 min
x11 + x21 + x31 + x41 + x51 ≤ 180
x12+ x22 + x32 + x42 + x52 ≤ 350
x13 + x23 + x33 + x43 + x53 ≤ 20
x11 + x12 + x13 ≤ 110
x21 + x22 + x23 ≤ 90
x31 + x32 + x33 ≤120
x41 + x42 + x43 ≤ 80
x51 + x52 + x53 ≤ 150
x if ≥ 0, i = 1,¯5, f = 1,¯3
3. F = 7x11 +12 x12 + 4x13 + 6x14 + 5x15 + x21 + 8x22 +6x23 + 5x24 + 3x25 + 6x31 + 13x32 + 8x33 + 7x34 + 4x35 min
x11 + x21 + x13 + x14 + x15 = 180
x21+ x22 + x23 + x24 + x25 = 350
x31 + x32 + x33 + x34 + x35 = 20
x if ≥ 0, i = 1,¯3, f = 1,¯5
4. F = 7x11 + x12 + 6x13 + 12x14 + 8x22 + 13 x23 + 4x31 + 6x32 + 8x33 + 6x41 + 5x42 + 7x43 + 5x51 + 3x52 + 4x53 min
x11 + x12 + x13 ≤ 110
x21 + x22 + x23 ≤ 90
x31 + x32 + x33 ≤120
x41 + x42 + x43 ≤ 80
x51 + x52 + x53 ≤ 150
x if ≥ 0, i = 1,¯5, f = 1,¯3
5. F = 7x11 + 12x12 + 4x13 + 6x14 + 5x15 + x21 + 8x22 +6x23 + 5x24 + 3x25 + 6x31 + 13x32 + 8x33 + 7x34 + 4x35 min
x11 + x12 + x13 + x14 + x15 = 180
x21+ x22 + x23 + x24 + x25 = 350
x31 + x32 + x33 + x34 + x35 = 20
x11 + x21 + x31 = 110
x12 + x22 + x32 = 90
x13 + x23 + x33 =120
x14 + x24 + x34 = 80
x15 + x25 + x35 = 150
x if ≥ 0, i = 1,¯3, f = 1,¯5
Задание 16
Вопрос 1. Укажите решение задачи целочисленного линейного программирования, обеспечивающее максимальное значение целевой функции. Геометрическая интерпретация задачи приведена на рисунке:
1. x * = (1; 5)
2. x * = (7; 3)
3. x * = (8; 3)
4. x * = (9; 1)
5. x * = (10;0)
Вопрос 2. Используя геометрическую интерпретацию задачи целочисленного линейного программирования, укажите решение задачи:
3x1 + x2 min
- 4x1+ x2 ≤ 29
3x1 – x2 ≤ 15
5x1 + 2x2 ≥ 38
x1, x2 ≥ 0, x1, x2 -целые
1. Fmin=29
2. Fmin=22
3. Fmin=12
4. Fmin=19
5. Fmin=18
Вопрос 3. Используя геометрическую интерпретацию задачи целочисленного линейного программирования, укажите решение задачи:
5x1 + 7x2 min
- 3x1 + 14x2 ≤ 78
5x1 – 6x2 ≤ 26
x1 + 4x2 ≥ 25
x1, x2, ≥ 0, x1, x2 - целые
1. Fmin=80
2. Fmin=60
3. Fmin=45
4. Fmin=25
5. Fmin=52
Вопрос 4. Используя метод Гомори, найдите максимальное значение функции: F(x) = 4x1 + 5x2 + x3, при условиях:
3x1 + 3x2 + x3 = 13
3x1 + 2x2 + x4 = 10
x1 + 4x2 + x5 = 11
xi N
1) F(x) = 19, при х = (2,2,1,0,1);
2) F(x) = 25, при х = (2,2,1,0,1);
3) F(x) = 19, при х = (2,2,1,0,0);
4) F(x) = 25, при х = (5,1,0,0,0);
5) F(x) = 10, при х = (1,1,1,0,1).
Вопрос 5. Выбрать математическую модель для решения задачи: В аэропорту для перевозки пассажиров по n маршрутов может быть использовано m типов самолетов. Вместимость самолета i-го типа равна a iчеловек, а количество пассажиров, перевозимых по j-му маршруту за сезон, составляет bf человек. Затраты, связанные с использованием самолета i-го типа на j-м маршруте, составляют Cif руб. Определить для каждого типа самолетов сколько рейсов и на каком маршруте должно быть сделано, чтобы потребность в перевозках была удовлетворена при наименьших общих затратах.
1. при условиях
2. при условиях
3. при условиях
4. при условиях
5. при условиях
Задание 17
Вопрос 1. Используя метод геометрической интерпретации, укажите максимальное значение функции:
F = x1x2 при условиях
6x1 + 4x2 ≥ 12
2x1 + 3x2 ≤ 24
- 3x1 + 4x2 ≤ 12
x1,x2 ≥ 0
1. Fmax = 24
2. Fmax = 24.94
3. Fmax = 23.1
4. Fmax = 42
5. Fmax = 22.5
Вопрос 2. Используя метод геометрической интерпретации, укажите максимальное значение функции:
F = 4x1 + 3x2 при условиях
X12 – 2x1 + x22 - 2x2 -34 ≤ 0
X1 ≥ 1
X2 ≥ 2
1. Fmax = 36.9
2. Fmax = 41.8
3. Fmax = 36
4. Fmax = 37
5. Fmax = 38.2
Вопрос 3. Укажите математическую модель для задачи: Между n предприятиями отрасли необходимо распределить выпуск некоторой однородной продукции. Затраты, связанные с производством единиц продукции на j-м предприятии, зависят от объема производства и определяются функциями f j (xi). Зная, что продукции должно быть изготовлено не менее b единиц, составить такой план производства продукции предприятиями отрасли, при котором общие затраты, связанные с ее производством, минимальны.
1.
2.
3.
4.
5.
Вопрос 4. Используя метод множителей Лагранжа, укажите экстремум функции: f = x12 + x22 + x3 при условиях
x1 + x2 + x3 = 4
2x1 – 3x2 = 12
1.
2.
3. f min = 16.75
4. f min = 34
5. f min = 58
Вопрос 5. Используя метод множителей Лагранжа, укажите экстремум функции: f = x1x2 + x2x3
x1 + x2 = 4
x2 + x3 = 4
1. f min =0
2. f max = 90
3. f max =8
4. f max = 7.5
5. f min = -280
Задание 18
Вопрос 1. Укажите формулировку задачи в терминах общей задачи динамического программирования:
1. Найти максимум функции при условиях
2. Найти минимум функции при условиях
3. Найти минимум функции при условиях
4. Выбрать такую стратегию управления U* = (u1* ,u*2 ,…,u*n ) чтобы обеспечить максимум функции
5. Найти максимум функции
Вопрос 2. К какому типу задач относится задача вида: при условиях
1. Задача линейного программирования
2. Задача динамического программирования
3. Задача нелинейного программирования
4. Транспортная задача
5. Целочисленная задача линейного программирования
Вопрос 3. Укажите выражение, представляющее основное функциональное уравнение Беллмана или рекуррентное соотношение:
1.
2.
3.
4.
5.
Вопрос 4. Как получить оптимальную стратегию управления методом динамического программирования?
1. В один этап
2. В n этапов; сначала оптимальная стратегия ищется на 1-м шаге, затем на 2-м и т.д. вплоть до последнего n-го шага
3. В n этапов; сначала оптимальная стратегия ищется на 1-м шаге, затем на двух первых шагах, затем на трех первых шагах и т.д., включая последний n-й шаг.
4. В n этапов; сначала оптимальная стратегия ищется на n-м шаге, затем на (n-1)-м, затем на (n-2)-м и т.д. вплоть до 1-го шага.
5. В n этапов; сначала оптимальная стратегия ищется на n-м шаге, затем на 2-х последних шагах, затем на 3-х последних и т.д. вплоть до первого шага.
Вопрос 5. Какая формулировка является формулировкой в терминах динамического программирования для задачи: В состав производственного объединения входят два предприятия, связанные между собой кооперативными поставками. Вкладывая дополнительные средства в целях развития этих предприятий, можно улучшить технико-экономические показатели деятельности производственного объединения в целом, обеспечив тем самым получение дополнительной прибыли. Величина этой прибыли зависит от того, сколько выделяется средств каждому предприятию и как эти средства используются. Считая, что на развитие i-го предприятия в начале k-го года выделяется ai(k) тыс. руб., найти такой вариант распределения средств между предприятиями в течении N лет, при котором обеспечивается получение за данный период времени максимальной прибыли.
1. Критерий при условиях
2. - состояние системы в начале k-го года, - управление ; Критерий
3. - состояние системы в начале k-го года, - управление
4. Критерий при условиях
5. - управления Критерий -
Шпаргалка:
60 страниц(ы)
1. Источники финансирования ремонта основных фондов
2. Информационная база финансового менеджмента
3. Финансовые ресурсы предприятия. Состав и особенности формирования в рыночных условиях4. Информационные технологии в финансовом менеджментеРазвернутьСвернуть
5. Экономическая сущность прибыли предприятия
6. Система показателей финансового анализа
7. Порядок планирования, начисления и использования амортизационных отчислений
8. Факторные модели финансового анализа
9. Задачи и функции финансовой службы
10. Принципы организации финансов предприятия
11. Понятие финансового рычага
12. Состав оборотного капитала и его размещение по стадиям кругооборота
13. Бюджеты, их виды и роль в краткосрочном планировании
14. Основные принципы и задачи финансового планирования
15. Потоки платежей и методы их оценки. Виды процентных ставок
16. Характеристика основных направлений работы финансовой службы
17. Сущность и виды финансового риска. Риск и доходность
18. Амортизация и ее роль в воспроизводственном процессе
19. Виды и методы оценки инвестиционных проектов
20. Виды и методы оценки инвестиционных проектов
21. Виды финансовых планов и их назначение
22. Принципы и методы формирования бюджета капитальных вложений
23. Сущность и функции финансов предприятия. Содержание финансовых отношений, возникающих в процессе его хозяйственной деятельности
24. Понятие стоимости и структуры капитала
25. Показатели рентабельности и их использование в финансовом планировании
26. средневзвешенная и предельная стоимость капитала
27. Методы планирования прибыли
28. Сущность дивидендной политики
29. Определение потребности предприятия в оборотном капитале
30. Виды и источники дивидендных выплат
31. Планирование затрат и формирование себестоимости продукции (работ, услуг)
32. Основные методики дивидендных выплат
33. Источники финансирования капитальных вложений производственного и непроизводственного назначения
34. Понятие и основные элементы оборотного капитала
35. Выручка от продаж как основной финансовый источник деятельности предприятия
36. Методы долгового финансирования
37. Финансовые инвестиции предприятия, их цель виды и способы осуществления
38. Операционный и финансовый цикл предприятия
39. Экономическое содержание и основы организации оборотного капитала на предприятии
40. Управление товарными запасами
41. Понятие, цели и задачи финансового менеджмента
42. Управление денежными средствами и ликвидностью
43. Базовые концепции финансового менеджмента
44. Управление дебиторской и кредиторской задолженность
45. Понятие операционного рычага.
-
Дипломная работа:
115 страниц(ы)
Введение.
1.Технические требования к технологии изготовления и конструкции матричного ФПУ….….
2. Базовая технология изготовления МФПУ.2.1. Разработка базовых технологических процессов изготовления МФПУ….…РазвернутьСвернуть
2.1.1. Технологический маршрут изготовления матрицы ФЧЭ.
2.1.1.1. Исходный материал.
2.1.1.2. Просветляющие, защитные и маскирующие покрытия.
2.1.1.3. Диффузия кадмия в запаянной ампуле.
2.1.1.4. Способ диффузионного легирования из стеклообразных пленок
2.1.1.5. Контактная металлизация титан-золото.
2.1.1.6. Двусторонняя фотолитография.
2.1.1.7. Стыковочные элементы – индиевые микроконтакты.
2.1.2. Технологический маршрут изготовления БИС считывания и обработки сигнала .
2.1.2.1. Формирование карманов.
2.1.2.2. Формирование электрической изоляции р-областей с использованием LOCOS технологии 2.
2.1.2.3. Легирование нижних обкладок конденсатора фосфором.
2.1.2.4. Легирование каналов р-канальных транзисторов бором.
2.1.2.5. Формирование МОП-структуры.
2.1.2.6. Легирование n+- и р+- областей.
2.1.2.7. Межслойная изоляция.
2.1.2.8. Формирование металлической разводки.
2.1.2.9. Пассивация схемы.
2.1.2.10. Проверка тестов, разбраковка.
2.1.2.11. Формирование индиевых микроконтактов.
2.1.3. Технологический маршрут сборки и контроля параметров матричного ФПУ.
2.2. Разработка базовых технологических процессов изготовления матрицы ФЧЭ.
2.2.1. Низкотемпературное осаждения пленок нитрида кремния.
2.2.2. Формирование р-n-перехода.
2.2.3. Фотолитографическое выделение элементов.
2.2.4. Формирование контактной системы.
2.2.4.1. Плазмо-химическое травление диэлектрических слоев и очистка контактных окон.
2.2.4.2. Контактные площадки.
2.2.4.3. Индиевые микроконтакты.
2.2.5. Разработка процессов стыковки кристаллов из кремния и материала типа А3В5.
2.3. Разработка базовых технологических процессов изготовления БИС считывания матричных ФПУ.
2.3.1. Процессы химической обработки пластин.
2.3.2. Процессы термические.
2.3.2.1. Процессы термического окисления.
2.3.2.2. Характеристики процессов термического окисления.
2.3.3. Диффузионные процессы.
2.3.4. Процессы термического отжига ионнолегированных слоев.
2.3.5. Процессы фотолитографии.
2.3.6. Процессы ионного легирования.
2.3.7. Процессы плазмохимические.
2.3.8. Процессы осаждения пленок.
2.3.9. Процессы напыления.
2.3.10. Процесс создания индиевых микроконтактов.
2.4. Разработка технологии сборки ФПУ.
2.4.1. Приклеивание платы (растра).
2.4.2. Разварка БИС с ФЧЭ на плату и платы коммутационной на держатель.
3. Конструкция МФПУ.
3.1. Разработка рабочей конструкторской документации….
3.2. Конструктивные особенности матричного ФПУ.
3.3. Конструктивные особенности МФЧЭ.
3.4. Конструктивные особенности БИС считывания.
3.4.1. Схема накопительной ячейки.
3.4.2. Структурная схема мультиплексора 320х256 и электрическая принципиальная схема его аналоговой части.
4. Изготовление и испытания опытного образца МФПУ…
4.1. Изготовление опытного образца МФПУ….
4.2. Результаты испытаний опытного образца МФПУ….
5. Организационно-экономическая часть….
Выводы….
Литература….
-
Контрольная работа:
10 страниц(ы)
Задача 3.
Как измениться кривая спроса и предложения, если введен налог 2 единицы. Налог выплачивается: а) за счет покупателя, б) за счет продавца.Найти равновесную цену и равновесный объем производства в этих случаях; в) как измениться кривая спроса и предложения и как распределится налог между покупателями и продавцами, если равновесная цена после введения налога станет равной 20. Использовать данные задачи 1.РазвернутьСвернуть
Данные из первой задачи: дана кривая спроса: Qd =200–4P, кривая предложения: QS = 60+3P
Задача 4.
Предприниматель намерен вложить в приобретение станка 60000 руб. и намерен использовать его в течении 2-ух лет. Предполагаемая прибыль за 2 года составит 68355 руб. и распределится по годам следующим образом: П1 =33075 руб., П2 =35280 руб. Определить текущую стоимость капитальных вложений (PV): где ПТ – прибыль в году Т, r – ставка банковского процента, r = 5%.
Какую сумму, разделенную на две части, необходимо положить в банк в начале первого года, чтобы первая часть вложенной суммы через год возросла до суммы, равной прибыли первого года, а вторая часть вложенной суммы возросла через два года до суммы, равной прибыли второго года.
Рассчитать чистую текущую стоимость (NPV): NPV = PV – IC , где IC – инвестиции. Определить какой из вариантов более выгоден предприятию: инвестиции в станок или размещение средств в банке.
PV = PV1 + PV2
Задача 1 Имеются следующие данные.
№ стр. Наименование стадии производства и реализации Выручка на стадии n
Bn Добавленная стоимость на стадии n
ДСт = Вn – Вn-1
1 2 3 4
1 Овцеводство 100 ?
2 Суконное производство 140 ?
3 Швейное производство 165 ?
4 Оптовая торговля 215 ?
5 Розничная торговля 300 ?
6 Конечный продукт ? -
7 Добавленная стоимость - ?
8 Валовой продукт ? -
Рассчитать недостающие данные. Определить сумму ВВП. Показать соотношение между ВВП и размером совокупной добавленной стоимости. Рассчитать валовой продукт.
Задача 2. Имеются следующие данные:
C IT G X M
800 300 150 150 180
Рассчитать ВВП по расходам
Задача 3. На основе данных задачи 1 и задачи 2 рассчитать ВВП по целевым фондам, включающим сбережения частных лиц без учета налогов.(ВВПЦФ1)
Решение
+Са (фонд потребления без налогов) +А
Фонд амортизации +Sa
Фонд сбережений частных лиц без учета налогов
+Т
Все налоги ВВПЦФ1
ВВП по целевым фондам, включая сбережения частных лиц
280 80 800 200 1360
-
Курсовая работа:
Педагогические взгляды В.П.Кащенко и П.П.Блонского на работу с педагогически запущенными детьми
35 страниц(ы)
ВВЕДЕНИЕ
РАЗДЕЛ 1. ПЕДАГОГИЧЕСКИЕ ВЗГЛЯДЫ И ОПЫТ РАБОТЫ В.П.КАЩЕНКО С ПЕДАГОГИЧЕСКИ ЗАПУЩЕННЫМИ ДЕТЬМИ
1.1. Концептуальные основы системы обучения и воспитания детей с проблемами развития1.2. Методы и принципы педагогической коррекцииРазвернутьСвернуть
РАЗДЕЛ 2. ПЕДАГОГИЧЕСКИЕ ВЗГЛЯДЫ И ОПЫТ РАБОТЫ ПЕДАГОГИЧЕСКИ ЗАПУЩЕННЫМИ ДЕТЬМИ
2.1. Изучение «трудных детей» П.П.Блонским
РАЗДЕЛ 3. УСЛОВИЯ ПРИМЕНЕНИЯ ОПЫТА В.П.КАЩЕНКО В СОВРЕМЕННЫХ УСЛОВИЯХ
ЗАКЛЮЧЕНИЕ
СПИСОК ЛИТЕРАТУРЫ
-
Контрольная работа:
Организация производства на предприятиях отрасли, вариант 6
4 страниц(ы)
Задание 1. Определить длительность технологического цикла при всех трех видах движения предметов труда. На первой и третьей операциях работа выполняется на двух станках, на шестой – на трех, на всех остальных – на одном станке. Работа производится в две смены по 8 ч. Размер обрабатываемой партии (n) 150 шт. Размер транспортной партии 15 шт.Номер операции i 1 2 3 4 5 6РазвернутьСвернуть
Норма времени, мин. ti 6 4 8 5 7 9
Количество рабочих мест ci 2 1 2 1 1 3
Задание 2. Определить такт линии, число рабочих мест, их загрузку, скорость движения, длину рабочей зоны конвейера. Программа выпуска деталей за смену 300 шт. Шаг конвейера 1,1 м. Продолжительность смены 8 ч. Технологические потери, 1,5% от программы запуска.
Номер операции, i 1 2 3 4 5
Норма времени, мин. ti 2,6 8,1 2,4 5,5 1,2
Расчетное Число рабочих мест c_ip 1,65 5,14 1,52 3,49 0,76
Число рабочих мест c_i 2 6 2 4 1
Коэффициент загрузки рабочего места K_з 0,82 0,86 0,76 0,87 0,76
Задание 3. Необходимо за 8-часовой рабочий день перевезти 200 т керамзита КамАЗами грузоподъемностью 10 т. Длительность одного рейса – 1,5 часа. Коэффициент полезного использования грузоподъемности – 0,8. Определить необходимое количество машин.
Задание 4. Построить сетевой график и рассчитать его параметры.
1-2 1-3 1-4 2-3 2-5 2-7 3-7 3-9 4-6 5-6 6-8 7-8 7-9 8-9
7 5 9 4 2 6 10 3 11 2 6 1 8 12
Задание 5. В механическом цехе в июне при 22 рабочих днях и 2-х сменном режиме работы по 8 часов работало 7 фрезерных станков. По плану цеху установлено произвести 1100 деталей, нормативная трудоемкость одной детали 2 часа. Определить производственную мощность цеха и коэффициент использования мощности. -
Контрольная работа:
7 страниц(ы)
Задача 1
В регионе на 01.01.2004г. проживало подростков в возрасте 15 лет - А чел. Коэффициент смертности (%о): для 15-летних составил В; для 16-летних - С; коэффициент дожития для 17-летних- Д.Определить ожидаемую численность достигших совершеннолетия к началу 2007г.РазвернутьСвернуть
Вар. 4
А=13890
В=0,93
С=0,94
Д=0,997
Задача 2
Имеются следующие данные по предприятию об использовании рабочего времени за апрель месяц (22 рабочих дня).
1) Отработано рабочими, чел.-дн.
2) Целодневные простои, чел.-дн.
3) Неявки, чел.-дн.
в том числе:
4) в связи с очередными отпусками
5) по болезни
6) в связи с отпусками по учебе
7) в связи с выполнением государственных обязанностей
8) по разрешению администрации
9) прогулы
10) в связи с выходными и праздничными днями
Постройте баланс использования рабочего времени и определите:
1) относительные показатели структуры максимально возможного фонда рабочего времени;
2) коэффициенты использования фондов рабочего времени.
Вар.4
1760
44
?
50
30
12
18
6
2
819
Задача 3
Имеются следующие результаты анализа показателей по труду и заработной плате за два квартала (%):
- индекс среднего числа дней работы на одного списочного составил
- индекс средней фактической продолжительности рабочего дня
- индекс средней дневной заработной платы
- индекс коэффициента увеличения фонда заработной платы за счет доплат
- индекс коэффициента увеличения фонда месячной заработной платы за счет доплат
Определите динамику средней часовой и средней месячной заработной платы.
Вар.4
102,5
97
103,7
102,
104,3
-
Кейсы/Задачи:
2 страниц(ы)
В приёмное отделение детской инфекционной больницы доставлен больной ребёнок, у которого в анамнезе установлен контакт с больным ветряной оспой 11 дней назад. При поступлении этого ребёнка в приёмном отделении находился ещё один ребёнок, не болевший ветряной оспой.ЗаданиеРазвернутьСвернуть
1. Укажите ошибку, допущенную при приёме детей.
2. Решите, куда поместить поступившего ребёнка и ребёнка, находившегося одновременно с ним в приёмном отделении.
Дополнительная информация:
В данное время в больнице имеется только один свободный бокс.
-
Контрольная работа:
Социальная психология, педагогика и этика деловых отношений код (ПЭ93), вариант 2
9 страниц(ы)
Задание 1. Вы собираетесь пойти устраиваться на работу и знаете, что нужно пройти собеседование. Как вам лучше подготовиться к этому событию? Как следует вести себя во время собеседования? Какие не следует допускать ошибки при разговоре с работодателем?Задание 2. Прокомментируйте краткую схему возникновения, продолжения и разрешения конфликта на конкретном примере.РазвернутьСвернуть
Задание 3. Изложите основные отличительные признаки неформальной группы. В чем ее отличие от формальной группы?
Задание 4. Изучите ситуацию: на работе служащий постоянно думал о ссоре, произошедшей дома. Ему не давала покоя мысль о том, что жена не понимает его увлеченность работой. К тому же по пути на работу он застрял в автомобильной пробке. А в заключении ко всему, придя на работу, получил серьезный выговор за небольшую ошибку, допущенную в его работе накануне. У служащего наступило стрессовое состояние. Какие основные приемы ухода от стресса вы бы порекомендовали ему?
Задание 5. Сформулируйте обыденные ситуации общения.
Задание 6. Как внешний облик влияет на общение людей? Что вы порекомендовали бы одеть человеку, идущему: на официальный прием, на встречу с друзьями, на банкет?
Задание 7. Как необходимо проводить телефонные разговоры с партнерами по бизнесу? Составьте примерный телефонный разговор (на выбор) секретаря фирмы и клиента; руководителя организации и партнера по бизнесу.
Задание 8. Как вы думаете, как должен вести себя мужчина в общении с дамой?
Задание 9. Каким образом можно эффективно использовать влияние через традиции? Каковы сильные и слабые стороны влияния через традиции? Приведите примеры.
Задание 10. Раскройте содержание психологии управления коллективом фирмы. Изучите ситуацию: руководитель крупного предприятия отдал поручение своему заместителю довести до сведения всех работников следующее:
• введение на рабочих местах дополнительной оргтехники;
• введение новой отчетности;
• усиление контроля на производстве.
Как вы думаете, в каком виде эта информация дойдет до рабочих и служащих? От чего это зависит? Какой закон человеческой психики здесь действует?
-
Тест:
МАТЕМАТИКА МА2-МНЭПУ, вариант 3 (23 задания по 5 тестовых вопроса)
27 страниц(ы)
Задание 1
Вопрос 1. Когда возникла идея о бесконечности числового ряда?
1. В I веке до н.э.
2. Во II веке до н.э.3. В III веке до н.э.РазвернутьСвернуть
4. В IV веке до н.э.
5. В V веке до н.э.
Вопрос 2. Какое из чисел не является рациональным?
1.
2. 0.1
3. 0.111.
4.
5.
Вопрос 3. Какое из чисел не является действительным?
1. е (основание “натуральных логарифмов”)
2.
3.
4.
5.
Вопрос 4. В какой строке свойство кватернионов записано с ошибкой?
1.
2.
3.
4.
5. kj=jk
Вопрос 5. Какое трансфинитное число получится в результате увеличения трансфинитного числа на 1000000?
1.
2.
3.
4. 1000000
5.
Задание 2
Вопрос 1. Как можно сформулировать основные направления математических исследований в общественных науках?
1. Исследования в области линейного программирования
2. Исследования в области нелинейного программирования
3. Исследования в области экономики
4. Исследования в области кибернетики
5. Исследования в части точного описания функционирования общественных систем и их частей и исследования влияния сознательного воздействия (управления) на функционирование социальных структур и течение социальных процессов.
Вопрос 2. Какое предположение лежит в основе использования матрицы коэффициентов выживаемости и рождаемости?
1. Предположение о неизменности выживаемости и рождаемости
2. Предположение об однородной возрастной структуре
3. Предположение о прекращении эпидемий на рассматриваемом временном интервале
4. Предположение об отсутствии войн
5. Предположение об отсутствии стихийных бедствий
Вопрос 3. Какая гипотеза является следствием рассмотрения модели изменения численности аристократов в племени Нетчез?
1. Количество аристократов в племени было стабильным
2. Племя не имело стабильной классовой структуры
3. Племя вело жестокие войны
4. Количество “парий” (неимущих) в племени постоянно возрастало
5. Общая численность племени не могла быть стабильной
Вопрос 4. Какая из гипотез не использовалась в простейшей модели экономического роста?
1. Общий доход равен сумме затрат на предметы потребления и сбережений
2. Сбережения равны затратам на средства труда
3. Доля сбережений не равна нулю
4. Производство дополнительной продукции пропорционально дополнительным капиталовложениям
5. Рост производства дополнительной продукции опережает рост затрат
Вопрос 5. Как чаще всего целесообразно решать проблему, возникающую при необходимости учета дополнительных факторов в очень большой и сложной экономической модели?
1. Ввести в модель новые категории и зависимости
2. Постараться выделить (разработать) подмодели, в которых будут учтены дополнительные факторы
3. Разработать модель заново с учетом дополнительных факторов
4. Упростить модель, затем учесть дополнительные факторы
5. Учесть в модели всю имеющуюся информацию
Задание 3
Вопрос 1. Какая из геометрических фигур не изучается планиметрией?
1. Треугольник
2. Ромб
3. Параллелепипед
4. Окружность
5. Параллелограмм
Вопрос 2. Какая из формулировок является определением?
1. Существуют по крайней мере две точки
2. Каждый отрезок можно продолжить за каждый из его концов
3. Два отрезка, равные одному и тому же отрезку, равны
4. Прямой АВ называется фигура, являющаяся объединением всевозможных отрезков, содержащих точки А и В
5. Каждая прямая разбивает плоскость на две полуплоскости
Вопрос 3. Какая из формулировок о параллельных прямых по смыслу совпадает с пятым постулатом Евклидовских “Начал”?
1. Через точку, не лежащую на данной прямой, проходит единственная прямая, не пересекающая данную прямую
2. Две параллельные прямые при пересечении их третьей прямой образуют равные соответственные и внутренние накрест лежащие углы
3. Если прямая пересекает две другие прямые так, что внутренние односторонние углы с каждой из них оказываются в сумме меньше 180 , то эти прямые пересекаются по ту сторону от прямой, по какую лежат эти углы
4. Две прямые, перпендикулярные третьей прямой, параллельны
5. При пересечении двух параллельных прямых третьей сумма внутренних односторонних углов равна 180
Вопрос 4. Найдите ложное утверждение. Два треугольника равны, если они имеют соответственно равные:
1. три стороны
2. три угла
3. сторону и два прилежащих угла
4. два катета
5. гипотенузу и катет
Вопрос 5. Найти пару равновеликих геометрических фигур:
Задание 4
Вопрос 1. Какое утверждение противоречит V постулату Евклида?
1. Множество точек, лежащих по одну сторону от данной прямой на одном и том же расстоянии от нее, есть прямая
2. Сумма углов треугольника равна 180
3. Существуют подобные неравные треугольники
4. Сумма углов всякого четырехугольника меньше 360
5. Две параллельные прямые при пересечении их третьей прямой образуют равные соответственные углы
Вопрос 2. Какое из высказываний является аксиомой параллельности Лобачевского?
1. Через точку, не лежащую на данной прямой, проходит единственная прямая, не пересекающая данную прямую
2. Две прямые, параллельные третьей прямой, параллельны между собой
3. Существует такая прямая а и такая, не лежащая на ней точка А, что через точку А проходит не меньше двух прямых, не пересекающих прямую а
4. Две прямые, перпендикулярные третьей прямой параллельны
5. Прямые, не имеющие общих точек, называются параллельными
Вопрос 3. По равенству каких из заданных соответствующих элементов двух треугольников в геометрии Евклида делается вывод о подобии треугольников, а в геометрии Лобачевского - вывод о равенстве треугольников?
1. По трем сторонам
2. По двум сторонам и углу между ними
3. По катету и гипотенузе
4. По стороне и двум прилежащим углам
5. По трем углам
Вопрос 4. Указать число, которое не может быть суммой углов четырехугольника на плоскости Лобачевского:
1. 100
2. 270
3. 300
4. 330
5. 360
Вопрос 5. Указать число, которое не может быть суммой углов сферического треугольника:
1. 440
2. 190
3. 170
4. 360
5. 510
Задание 5
Вопрос 1. Какое из понятий не является основным и подлежит определению в планиметриях Евклида и Лобачевского?
1. Отношение “точка В лежит между точками А и С”
2. Точка
3. Расстояние
4. Угол
5. Прямая
Вопрос 2. Найдите аксиому I группы.
1. Для любой прямой существуют ровно две полуплоскости, ограниченные этой прямой
2. Существуют по крайней мере три точки, не лежащие на одной прямой
3. Для любых точек А и В выполняется равенство
4. Равенство выполняется тогда и только тогда, когда точка В принадлежит отрезку АС
5. Всякое движение есть взаимно однозначное соответствие
Вопрос 3. Какое из высказываний непосредственно следует из аксиом принадлежности?
1. Пусть прямая а не проходит через точки А, В и С. Тогда если прямая а пересекает отрезок АВ, то она пересекает еще один и только один из отрезков ВС или АС
2. Если луч с началом в вершине угла проходит через внутреннюю точку угла, то все его точки, кроме начала, лежат внутри угла
3. Для любых двух точек А и В существует такая точка С, что точка В лежит между А и С
4. Две прямые имеют не более одной общей точки
5. Из трех точек, лежащих на одной прямой, одна и только одна лежит между двумя другими
Вопрос 4. Найдите ошибку в определении интерпретации элементов модели Пуанкаре планиметрии Лобачевского.
1. Верхняя полуплоскость - это открытая полуплоскость, ограниченная горизонтальной прямой х
2. Абсолют - прямая х, граница верхней полуплоскости
3. Точки абсолюта - точки плоскости Лобачевского
4. Открытые полуокружности верхней полуплоскости с концами на абсолюте - неевклидовые прямые
5. Лучи полуплоскости с началом на абсолюте и перпендикулярные ему - также неевклидовые прямые
Вопрос 5. Найдите ошибку в описании элементов арифметической модели системы аксиом евклидовой планиметрии.
1. Любая упорядоченная пара целых чисел - “точка”, а число х, у - координаты “точки”
2. Уравнение , где , - “прямая”
3. Ось ординат - “прямая” х = 0
4. Ось абсцисс - “прямая” у = 0
5. Начало координат - “точка” (0, 0)
Задание 6
Вопрос 1. Как называется функция, производная которой равна данной функции?
1. Неявная функции
2. Подинтегральная функция
3. Неопределенный интеграл
4. Первообразная функция
5. Дифференциальное выражение
Вопрос 2. Найдите ошибочное выражение, если - одна из первообразных для функции , а С - произвольное постоянное.
1.
2.
3.
4.
5.
Вопрос 3. Какое из выражения является интегралом ?
1.
2.
3.
4.
5.
Вопрос 4. Какое из выражений является интегралом ?
1.
2.
3.
4.
5.
Вопрос 5. Какое из выражений является интегралом ?
1.
2.
3.
4.
5.
Задание 7
Вопрос 1. Какую из подстановок целесообразно использовать для замены переменной в интеграле ?
1.
2.
3.
4.
5.
Вопрос 2. Какую из подстановок целесообразно использовать для замены переменной в интеграле ?
1.
2.
3.
4.
5.
Вопрос 3. Какое из выражений целесообразно принять за u при интегрировании по частям интеграла ?
1.
2.
3.
4.
5.
Вопрос 4. Какое из выражений целесообразно принять за u при интегрировании по частям интеграла ?
1.
2.
3.
4.
5.
Вопрос 5. Какое из выражений является интегралом ?
1.
2.
3.
4.
5.
Задание 8
Вопрос 1. Какое из уравнений является разложением многочлена на простейшие действительные множители?
1.
2.
3.
4.
5.
Вопрос 2. Какой из многочленов имеет следующие действительные корни: простой корень, равный 1; корень второй кратности, равный (-2); два сопряженных комплексных корня: i и (-i)?
1.
2.
3.
4.
5.
Вопрос 3. Какая из рациональных дробей является неправильной?
1.
2.
3.
4.
5.
Вопрос 4. Какое из выражений является представлением правильной рациональной дроби в виде суммы многочлена и правильной рациональной дроби?
1.
2.
3.
4.
5.
Вопрос 5. Какое из выражений является разложением рациональной дроби на простейшие, где через обозначены неизвестные действительные числа.
1.
2.
3.
4.
5.
Задание 9
Вопрос 1. Какое из выражений является разложением рациональной дроби на целую часть и простейшие дроби?
1.
2.
3.
4.
5.
Вопрос 2. Найдите интеграл
1.
2.
3.
4.
5.
Вопрос 3. Какая подстановка позволяет найти интеграл ?
1.
2.
3.
4.
5.
Вопрос 4. Найти интеграл
1.
2.
3.
4.
5.
Вопрос 5. Какое выражение является иррациональным относительно функций и ?
1.
2.
3.
4.
5.
Задание 10
Вопрос 1. Какой из примеров используется при интегрировании четной степени синуса или косинуса?
1. Понижение подинтегральной функции (вдвое) заменой по тригонометрическим формулам.
2. Отделение одного из множителей и замены его новой переменной.
3. Замена или новой переменной.
4. Разложение на слагаемые по формулам произведения тригонометрических функций.
5. Интегрирование по частям.
Вопрос 2. Какой интеграл не выражается в элементарных функциях?
1.
2.
3.
4.
5.
Вопрос 3. Найти интеграл
1.
2.
3.
4.
5.
Вопрос 4. Найти интеграл
1.
2.
3.
4.
5.
Вопрос 5. Найти интеграл
1.
2.
3.
4.
5.
Задание 11
Вопрос 1. Чему равна площадь фигуры на рисунке?
1.
2.
3.
4.
5.
Вопрос 2. Если задана функция скорости при движении тела от точки А до точки В, что можно узнать интегрированием этой функции по времени?
1. Время движения тела от точки А до точки В
2. Скорость в точке В
3. Ускорение
4. Путь пройденный телом при движении от точки А до точки В
5. Расстояние между точками А и В
Вопрос 3. По какой переменной нужно проинтегрировать функцию силы, чтобы получить работу, совершенную при перемещении тела из точки А в точку В?
1. По пути
2. По времени
3. По скорости
4. По силе
5. По работе
Вопрос 4. Чему равна площадь заштрихованной фигуры?
1.
2.
3.
4.
5.
Вопрос 5. Какое из утверждений верно? Интеграл - это:
1. Функция от х
2. Функция от
3. Функция от и
4. Функция от
5. Число
Задание 12
Вопрос 1. Каков геометрический смысл определенного интеграла от функции в интервале в системе декартовых координат?
1. Длина линии в интервале
2. Алгебраическая площадь фигуры, ограниченной линией в интервале
3. Среднее значение функции в интервале
4. Произведение среднего значения функции в интервале на длину интервала
5. Максимальное значение функции в интервале
Вопрос 2. Чему равен интеграл для любой непрерывной функции :
1. нуль
2.
3.
4.
5. , где - первообразная от
. Вопрос 3. Чему равен интеграл , где c, k, m - константы:
1.
2.
3.
4.
5.
Вопрос 4. Какое из утверждений верно для любой непрерывной функции ? равен:
1.
2.
3.
4.
5.
Вопрос 5. Не вычисляя интеграл оценить границы его возможного значения, используя теорему об оценке определенного интеграла.
1. от 1 до
2. от до
3. от до
4. от до
5. от до 1
Задание 13
Вопрос 1. Какое из следующих утверждений верно для любой непрерывной функции , если - первообразная от .
1. - число
2.
3.
4. - функция от x
5.
Вопрос 2. Вычислить интеграл, используя формулу интегрирования по частям и выберите правильный ответ
1.
2.
3.
4.
5.
Вопрос 3. Вычислить интеграл, используя правило замены переменных
1.
2.
3.
4.
5.
Вопрос 4. Не производя вычислений, укажите интеграл, равный нулю.
1.
2.
3.
4.
5.
Вопрос 5. Вычислить интеграл
1.
2.
3.
4.
5.
Задание 14
Вопрос 1. Какой из приведенных ниже интегралов является несобственным, если функция - непрерывна?
1.
2.
3.
4.
5.
Вопрос 2. Чему равен интеграл
1.
2. Интеграл расходится
3. 0
4. 2
5.
Вопрос 3. Чему равен интеграл
1.
2. 0
3.
4.
5.
Вопрос 4. Какое из дифференциальных выражений является полным дифференциалом?
1.
2.
3.
4.
5.
Вопрос 5. Какая из функций является первообразной для дифференциального выражения ?
1.
2.
3.
4.
5.
Задание 15
Вопрос 1. Какое из уравнений не является дифференциальным? ( y функция от x).
1.
2.
3.
4.
5.
Вопрос 2. Сколько частных решений имеет уравнение ?
1. 1
2. 2
3. 7
4. 51
5. Бесконечное множество.
Вопрос 3. Сколько общих решений имеет дифференциальное уравнение ?
1. 1
2. 2
3. 100
4. 72
5. Бесконечное множество.
Вопрос 4. Что является условием наличия единственного частного решения уравнения при условии ?
1. Непрерывность функции
2. Интегрируемость функции
3. Непрерывность в области, содержащей точку
4. Непрерывность функции и ее частной производной в некоторой области, содержащей точку
5. Непрерывность функции и ее частной производной в некоторой области, содержащей точку
. Вопрос 5. Какое из уравнений не является дифференциальным уравнением с разделяющимися переменными?
1.
2.
3.
4.
5.
Задание 16
Вопрос 1. Какой величине пропорциональна скорость радиоактивного распада?
1. Массе распавшегося вещества
2. Общей массе радиоактивного вещества
3. Массе нераспавшегося вещества
4. Температуре радиоактивного вещества
5. Произведению температуры и массы вещества.
Вопрос 2. Какое из дифференциальных уравнений нельзя свести к линейному?
1.
2.
3.
4.
5.
Вопрос 3. Какое из дифференциальных уравнений не является однородным?
1.
2.
3.
4.
5.
Вопрос 4. К какому дифференциальному уравнению приводит задача о вытекании жидкости из цилиндрического сосуда через отверстие?
1. К нелинейному
2. К уравнению с разделяющимися переменными
3. К однородному
4. К дифференциальному уравнению второго порядка
5. К дифференциальному уравнению третьего порядка
Вопрос 5. Какое из дифференциальных уравнений описывает охлаждение тела в среде с постоянной температурой?
1. , где C2 – температура среды, C1 – постоянная величина
2. , где ТС – температура среды, k – постоянная величина
3. , где ТС – температура среды, k – постоянная величина
4.
5. , где k – постоянная величина
Задание 17
Вопрос 1. Какое из уравнений является уравнением в полных дифференциалах? (Установить с помощью проверки выполнения условия )
1.
2.
3.
4.
5.
Вопрос 2. Как выглядит уравнение изоклины для уравнения ?
1.
2.
3.
4.
5.
Вопрос 3. Пусть с помощью графического метода Эйлера построена интегральная кривая уравнения , причем при ее построении интервал разбивали на n частей точками . Какому условию удовлетворяет ?
1. Производная непрерывна
2.
3.
4. при
5. при
Вопрос 4. Какой вид имеет дифференциальное уравнение второго порядка?
1.
2.
3.
4.
5.
Вопрос 5. Какой вид имеет общее решение дифференциального уравнения второго порядка?
1. , где C1, C2, C3 - произвольные константы
2. , где - произвольные постоянные
3.
4.
5. , где - произвольные постоянные
Задание 18
Вопрос 1. Сколько начальных условий необходимо задать для определения постоянных величин в общем решении дифференциального уравнения второго порядка?
1. 1
2. 2
3. 3
4. 4
5. 0
Вопрос 2. При каком условии можно утверждать, что существует решение уравнения , удовлетворяющее условиям .
1. определена в точке
2. в точке
3. интегрируема в некоторой окрестности точки
4. непрерывна в точке
5. непрерывна по у
Вопрос 3. К какому дифференциальному уравнению при решении сводится уравнение ?
1. К уравнению в полных дифференциалах
2. К уравнению с разделяющимися переменными
3. К дифференциальному уравнению третьего порядка
4. К линейному дифференциальному уравнению первого порядка
5. К дифференциальному уравнению, не содержащему у
Вопрос 4. Чем определяется порядок дифференциального уравнения?
1. Количеством операций (шагов) при его решении
2. Количеством переменных величин в правой части
3. Максимальной степенью переменной х
4. Дифференцируемостью правой части уравнения
5. Высшим порядком производной, входящей в уравнение
Вопрос 5. Сколько произвольных постоянных величин содержит решение дифференциального уравнения 4-го порядка, если начальные условия не заданы?
1. 1
2. 2
3. 3
4. 4
5. 5
Задание 19
Вопрос 1. Какое из уравнений не сводится к линейному дифференциальному уравнению второго порядка?
1.
2.
3.
4.
5.
Вопрос 2. Под каким номером записано выражение, которое не может быть общим решением уравнения вида ни при каких значениях а1, а2?
1.
2.
3.
4.
5.
Вопрос 3. Под каким номером записано частное решение уравнения при начальных условиях ?
1.
2.
3.
4.
5. 0
Вопрос 4. Под каким номером записано общее решение уравнения ?
1.
2.
3.
4.
5.
Вопрос 5. Под каким номером записано общее решение уравнения ?
1.
2.
3.
4.
5.
Задание 20
Вопрос 1. Под каким номером записано общее решение уравнения ?
1.
2.
3.
4.
5.
Вопрос 2. Какова степень многочлена Q(x) в частном решении уравнения ?
1. 1
2. 2
3. 3
4. 4
5. 5
Вопрос 3. Под каким номером указан вид частного решения уравнения , где - многочлены четвертой степени?
1. , где - многочлены третьей степени
2. , где - многочлены четвертой степени
3. , где - многочлены четвертой степени
4. , где - многочлены пятой степени
5. , где - многочлены шестой степени
Вопрос 4. Какое из уравнений не может быть решено методом вариации произвольных постоянных?
1.
2.
3.
4.
5. Любое из перечисленных уравнений может быть решено методом вариации произвольных постоянных
Вопрос 5. Под каким номером указан вид общего решения уравнения ?
1. , где - произвольные постоянные, - полином второй степени
2. , где - произвольные постоянные, - полином третьей степени
3. - где - произвольные постоянные, - полином второй степени
4. - где - произвольные постоянные, - полином второй степени
5. - где - произвольные постоянные, - полином второй степени
Задание 21
Вопрос 1. Под какой цифрой записана система линейно зависимых функций?
1.
2.
3.
4.
5.
Вопрос 2. Какой из определителей является определителем Вронского?
1.
2.
3.
4.
5.
Вопрос 3. Предположим, что - фундаментальная система решений уравнения вида . Что можно сказать об определителе ?
1. Это не вронскиан
2. при любом значении х
3. в точке
4. при любом значении х
5.
Вопрос 4. Предположим, что характеристическое уравнение имеет корни: . Какова фундаментальная система решений соответствующего однородного дифференциального уравнения?
1.
2.
3.
4.
5.
Вопрос 5. Каким дифференциальным уравнением описываются свободные механические колебания?
1. Линейным дифференциальным уравнением первого порядка
2. Линейным однородным дифференциальным уравнением второго порядка
3. Линейным дифференциальным уравнением второго порядка с постоянными коэффициентами ненулевой правой частью
4. Дифференциальным уравнением третьего порядка с ненулевой правой частью
5. Однородным дифференциальным уравнением третьего порядка
Задание 22
Вопрос 1. При каком условии ток в электрической цепи будет установившимся?
1. Если дифференциальное уравнение колебаний в электрической цепи является линейным однородным
2. , где R - сопротивление, С - емкость, L - индуктивность электрической цепи
3. Правая часть уравнения , описывающего изменение тока в цепи не равна нулю
4. Правая часть уравнения , описывающего изменение тока в цепи не равна нулю
5. Правая часть управления , описывающего изменение тока в цепи равна нулю
Вопрос 2. Сколько начальных условий определяют частное решение нормальной системы дифференциальных уравнений?
1. Столько же, сколько функций составляют решение этой системы
2. В два раза больше, чем порядок дифференциальных уравнений в системе
3. Число начальных условий совпадает с порядком дифференциальных уравнений системы
4. Число начальных условий совпадает с максимальным числом переменных в правых частях дифференциальных уравнений системы
5. 2
Вопрос 3. Какая из систем дифференциальных уравнений не может быть приведена к нормальной?
1.
2.
3.
4.
5. Все перечисленные системы приводятся к нормальным
Вопрос 4. Какое из дифференциальных уравнений не может быть сведено к нормальной системе дифференциальных уравнений?
1.
2.
3.
4.
5.
Вопрос 5. В каком случае задачу решения системы дифференциальных уравнений можно свести к задаче решения одного дифференциального уравнения, порядок которого равен числу уравнений системы?
1. Если правые части дифференциальных уравнений системы непрерывны вместе со своими частными производными при значениях
2. Если правые части дифференциальных уравнений системы линейно независимы
3. Если система уравнений является нормальной
4. Если число уравнений системы не превышает число начальных условий
5. Если система не может быть приведена к нормальной
Задание 23
Вопрос 1. Сколько систем частных решений образуют фундаментальную систему решений системы трех линейных однородных дифференциальных уравнений с постоянными коэффициентами?
1. 1
2. 2
3. 3
4. 4
5. Фундаментальную систему образует одно общее решение системы
Вопрос 2. При каком условии может быть получено частное решение системы линейных однородных дифференциальных уравнений с постоянными коэффициентами, удовлетворяющее любым заданным начальным условиям?
1. Наличие фундаментальной системы решений
2. Непрерывность функций, образующих некоторое частное решение
3. Интегрируемость функций, образующих общее решение
4. Определитель матрицы, строками которой являются частные решения системы дифференциальных уравнений при не обращается в ноль
5. Определитель матрицы, строками которой являются частные решения системы дифференциальных уравнений равен нулю
Вопрос 3. Какой вид имеет частное решение системы линейных однородных дифференциальных уравнений с постоянными коэффициентами в случае действительных и различных корней характеристического уравнения ?
1.
2.
3. , где - постоянные величины
4. , где - постоянные величины
5. Здесь нет частного решения
Вопрос 4. Какой вид имеет частное решение системы двух линейных однородных дифференциальных уравнений с постоянными коэффициентами в случае комплексных корней характеристического уравнения ?
1. , где - постоянные величины
2. , где - постоянные величины
3.
4. , где - постоянные величины
5. , где - постоянные величины
Вопрос 5. Под каким номером записано общее решение системы уравнений ?
1.
2.
3. , где - постоянные величины
4. , где - постоянные величины
5. , где - постоянные величины