
«Методическое обеспечение лекционных занятий по курсу» - Дипломная работа
- 05.11.2023
- 114
- 2036
Содержание
Введение
Выдержка из текста работы
Заключение
Список литературы
Примечания

Автор: navip
Содержание
Введение. 5
Глава 1. Топологические пространства. 6
§1. Понятие множества. Характеристика свойств множеств. . . 6
§2. Понятия в топологическом пространстве. База топологии. . 7
§3. Структура открытых множеств и окрестностей. . . . . . . . 10
§4. Метрические пространства. . . . . . . . . . . . . . . . . . . . 11
§5. Замыкание. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
§6. Внутренние точки, внутренние границы. . . . . . . . . . . . 14
§7. Сепарабельное топологические пространства . . . . . . . . . 16
§8. Индуцированная топология. Отделимые пространства. . . . 18
§9. Непрерывное отображение. . . . . . . . . . . . . . . . . . . . 18
§10. Компактные пространства. . . . . . . . . . . . . . . . . . . . 19
Глава 2. Свойства метрических пространств. 22
§1. Сходящиеся последовательности в метрическом пространстве. 22
§2. Критерий полноты. . . . . . . . . . . . . . . . . . . . . . . . 27
§3. Компактные множества в метрическом пространстве. Теорема
Хаусдорфа. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
§4. Отображение компактных множеств. . . . . . . . . . . . . . 31
§5. Критерий компактности. . . . . . . . . . . . . . . . . . . . . 32
§6. Принцип сжимающих отображений и его применение. . . . . 36
§7. Теорема Бэра. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Глава 3. Мера и измеримые множества. 41
§1. Измеримые множества. Мера. Системы множеств. . . . . . . 41
§2. Cистема множеств в евклидовом пространстве. . . . . . . . 42
§3. Функции множеств. . . . . . . . . . . . . . . . . . . . . . . . 44
§4. Мера и её простейшие свойства. Мера в евклидовом пространстве.
45
§5. Внешняя мера. . . . . . . . . . . . . . . . . . . . . . . . . . . 48
§6. Измеримые множества. . . . . . . . . . . . . . . . . . . . . . 50
§7. Сходимость почти всюду. . . . . . . . . . . . . . . . . . . . . 53
§8. Сходимость по мере. . . . . . . . . . . . . . . . . . . . . . . . 56
§9. Единственность предела. . . . . . . . . . . . . . . . . . . . . 57
Глава 4. Интеграл Лебега. 60
§1. Интеграл Лебега для простых и ограниченных функций на
пространстве с конечной мерой. . . . . . . . . . . . . . . . 60
§2. Свойства интеграла( от ограниченных функций). . . . . . . 63
§3. Определение интеграла Лебега в произвольном случае. . . . 67
§4. Предельный переход под знаком интеграла. . . . . . . . . . . 71
§5. Лемма Фату. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Глава 5. Нормированные и гильбертовы пространства. 75
§1. Нормированное линейное пространство. . . . . . . . . . . . . 75
§2. Конечномерные пространства. Конечномерность и компактность.
Теорема Рисса локальной компактности. . . . . . . . . . . 77
§3. Гильбертово пространство. . . . . . . . . . . . . . . . . . . . 78
§4. Ортогональность и ортогональное дополнение . . . . . . . . 79
§5. Ряды Фурье в гильбертовом пространстве. . . . . . . . . . . 80
Глава 6. Линейные операторы в нормированных пространст-
вах. 83
§1. Линейные операторы, непрерывность, ограниченность. . . . 83
§2. Пространство всех линейных непрерывных операторов. . . . 85
§3. Принцип равномерной ограниченности Банаха – Штейнгауза. 86
§4. Обратные операторы. . . . . . . . . . . . . . . . . . . . . . . 88
§5. Замкнутый оператор. . . . . . . . . . . . . . . . . . . . . . . 90
§6. Теорема Банаха о замкнутом графике. . . . . . . . . . . . . 91
§7. Сопряженные пространства . . . . . . . . . . . . . . . . . . . 94
§8. Сопряженный оператор. . . . . . . . . . . . . . . . . . . . . . 97
§9. Самосопряженный оператор. . . . . . . . . . . . . . . . . . . 98
Глава 7. Спектральная теория операторов. 100
§1. Вполне непрерывный оператор. . . . . . . . . . . . . . . . . . 100
§2. Уравнения первого и второго рода. . . . . . . . . . . . . . . . 101
§3. Альтернативы Фредгольма. . . . . . . . . . . . . . . . . . . . 103
§4. Спектр и резольвента. Теорема Гильберта - Шмидта. . . . . 108
Заключение. 113
Литература 114
Введение
Данная выпускная квалификационная работа представляет собой курс лекций по дисциплине
"Функциональный анализ и может быть использована при подготовке к занятиям. В ее основу положены лекции, прочитанные студентам специальностей "Прикладная математика и инфор-
матика". В работе изложены основные понятия, определения, свойства и теоремы, доказательства перечисленных выше разделов.
Для создания дипломной работы используется текстовый редактор LaTeX, который имеет ряд преимуществ таких, как включение в текст сколь угодно сложных математических формул, которые прекрасно смотрятся на печати; при печати получается текст типографического качества и т.д.
Весь курс лекций подразделен на семь глав, которые подразделяютсяна параграфы. Внутри параграфов текст, как правило, группируется по определениям, теоремам, замечаниям, примерам. В первой главе рассматриваются топологические пространства. Во второй главе изучается свойства метрических пространств. Рассматриваются такие теоремы как: Теорема Хаусдорфа, теорема Бэра. В третьей главе изучаются мера и измеримые множества. В ней рассматриваются такие темы как: измеримые множества, мера, системы множе ств в евклидовом пространстве, внешняя мера, измеримые множества, сходимости, единственность предела. В четвертой главе изучается интеграл Лебега. В эту главу включены такие
темы как: интеграл Лебега, свойства интеграла Лебега, лемма Фату. В пятой главе рассматриваются нормированные и гильбертовы пространства.
В шестой главе линейные операторы в нормированных пространствах. В седьмой главе рассматривается спектральная теория операторов.
Выдержка из текста работы
ГЛАВА 1
ТОПОЛОГИЧЕСКИЕ ПРОСТРАНСТВА.
§1. Понятие множества. Характеристика свойств множеств.
В курсе функциональный анализ будут рассматриваться множества чисел, множества точек, множества линий, множества функций и т.п.
Множества обозначаются большими буквами A,B,C,M и т.д. Объекты, из которых состоит множество называются элементами множества. Мы будем обозначать их малыми буквами: a, b, c. Запись a ∈ A означает, что a есть элемент множества A. Запись ∅ – пустое множество. Запись A ⊂ B означает, что каждый элемент множества A называют подмножеством
множества B. Запись ∪
A - объединение множеств. Запись ∩
A - пересечение множеств. Запись ∞Σn=1
An - дизъюнктное объединение множеств.
Отображением φ множества M1 в множество M2 обозначается: φ : M1 → M2. Образ элемента x при отображении φ обозначается: x : φ(x) Совокупность всех тех элементов a ∈ M1, образом которых является данный элемент b ∈ M2, называется прообразом элемента b при отображении φ : M1 → M2 и обозначается через φ−1(b). Таким образом, φ−1(b) = {a ∈ M1 : φ(a) = b}. Отображение φ множества M1 в множество M2 называется сюръекцией,если φ(M1) = M2.
Теорема 1.1. (о прообразах). Прообраз объединения или пересечения двух множеств равен объединению или пересечению их прообразов со ответственно:
ϕ−1(A ∪ B) = ϕ−1(A) ∪ ϕ−1(B)
ϕ−1(A ∩ B) = ϕ−1(A) ∩ ϕ−1(B)
Теорема 1.2. (об образах). Образ объединения двух множеств равен объединению их образов:
ϕ(A ∪ B) = ϕ(A) ∪ ϕ(B)
Заключение
Основными источниками при написании выпускной квалификационной работы послужили конспекты лекций по функциональному анализу. Данная работа была набрана и отредактирована в среде LaTeX. Для изучения данной программы использовались следующие монографии:
К.В. Воронцов "LATEX в примерах"и С.М. Львовский "Набор и верстка в системе LaTeX".
В результате проделанной работы был составлен обзор по курсу функциональный анализ. Работа содержит необходимый теоретический материал в виде основных понятий, теорем, доказательств.
Практическая значимость данной выпускной квалификационной работы заключается в том, что она может быть использована в качестве методического пособия по курсу функциональный анализ для студентов специальностей "Прикладная математика и информатика".
Список литературы
[1] В. Босс. Лекции по математике, том5 – М.: Наука, 2005. - 448с.
[2] Б. З. Вулих. Введение в функциональный анализ – М.: Наука, 1967. - 296с.
[3] А. Н. Колмагоров, С. В. Фомин. Элементы теории функций и функционального анализа – М.: Наука, 2004. - 329с.
[4] С.С. Кутателадзе. Основы функционального анализа – М.: Наука, 2000. - 466с.
[5] Л. В. Канторович, Г.П. Акимов. Функциональный анализ – М.: Наука, 1984. - 208с.
[6] Л. А. Люстерник, В. И. Соболев. Краткий курс функционального анализа. – М.: Наука, 1982.
[7] С.М. Львовский. Набор и верстка в пакете LaTeX. – М.: МЦНМО, 2003.
[8] К.В. Воронцов. LaTeX в примерах, 2005.
Примечания
Форматы: *.pdf, *.tex *
Тема: | «Методическое обеспечение лекционных занятий по курсу» | |
Раздел: | Математика | |
Тип: | Дипломная работа | |
Страниц: | 114 | |
Стоимость текста работы: | 1900 руб. |
Закажите авторскую работу по вашему заданию.
- Цены ниже рыночных
- Необходимый уровень антиплагиата
- Прямое общение с исполнителем вашей работы
- Бесплатные доработки и консультации
- Минимальные сроки выполнения
- Пишем сами, без нейросетей
Мы уже помогли 24535 студентам
Средний балл наших работ
- 4.89 из 5
написания вашей работы
Предыдущая работа
Задачи по высшей математикеСледующая работа
кейс по корпоративным финансам-
Дипломная работа:
80 страниц(ы)
Введение….4
Глава I . АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ….6
§1.1. Метод координат на плоскости….6
1. Прямоугольная декартовая система координат….62. Полярная система координат….9РазвернутьСвернуть
3. Связь между прямоугольными и полярными координатами….10
4. Уравнение линии на плоскости….12
§1.2. Прямая линия…13
1. Уравнение прямой с угловым коэффициентом…14
2. Уравнение прямой с данным угловым коэффициентом и проходящей через данную точку….17
3. Уравнение прямой, проходящей через две заданные точки….18
4. Угол между двумя прямыми….…19
§1.3. Расстояние от данной точки до данной прямой. Расстояние между двумя точками. Деление отрезков в данном отношении….…22
1. Расстояние от данной точки до данной прямой….…22
2. Расстояние между двумя точками….23
3. Деление отрезков в данном соотношении…24
Упражнения…26
Глава II . ВЕКТОРНАЯ И ЛИНЕЙНАЯ АЛГЕБРА….29
§2.1. Понятие вектора и линейные операции над векторами…29
1. Понятие вектора….29
2. Линейные операции над векторами….30
3. Разложение векторов по двум неколлинеарным векторам….33
§2.2. Нелинейные операции над векторами…34
1. Скалярное произведение двух векторов….34
2. Векторное произведение двух векторов….39
3. Смешанное произведение трех векторов….42
§2.3. Матрицы и операции над матрицами….44
1. Матрицы и операции над матрицами…44
2. Определители второго и третьего порядков….47
3. Свойства определителей матриц….49
4. Обратная матрица…51
§2.4. Системы линейных уравнений…54
1. Матричная запись и матричное решение системы уравнений….54
2. Решение систем линейных уравнений методом Крамера….57
Упражнения…58
Глава III. МАТЕМАТИЧЕСКИЙ АНАЛИЗ….62
§3.1. Определение, виды и способы задания функции….62
1. Понятие функции…62
2. Способы задания функции….63
3. Обзор элементарных функций и их графиков….64
§3.2. Предел функции….68
1. Предел числовой последовательности….68
2. Число е….70
3. Предел функции….71
§3.3. Бесконечно малые и бесконечно большие величины….…72
1. Бесконечно малые….72
2. Бесконечно большие….74
Упражнения…75
Заключение….78
Список литературы…79
-
Дипломная работа:
75 страниц(ы)
Введение 3
Глава 1. Комплексные числа в тригонометрической и показательной форме. 5
Глава 2. Алгебраические системы 12Глава 3. Линейные отображения. 20РазвернутьСвернуть
Глава 4. Группы аффинных преобразований и их подгруппы 28
Глава 5. Плоскости и прямые в пространстве. 47
Глава 6. Поверхности второго порядка. 65
Заключение 74
Список литературы 75
-
Дипломная работа:
90 страниц(ы)
Введение….…4
Глава 1. Общая теория кривых второго порядка….5
1.1 Общее уравнение кривой второго порядка….51.2 Инварианты кривой второго порядка….11РазвернутьСвернуть
1.3 Асимптотические направления…16
1.4 Пересечение кривой с прямой….18
1.5 Касательная к кривой…20
1.6 Асимптота кривой второго порядка….…21
1.7 Диаметр кривой второго порядка….24
1.8 Центр кривой….25
1.9 Вид уравнения если начало координат совпадает с началом кривой….27
1.10 Вид уравнения если оси координат направлены по сопряженным направлениям относительно кривой….….27
1.11 Главные направления кривой второго порядка….28
1.12 Главные диаметры….….30
1.13 Приведение кривой второго порядка к каноническому виду с помощью инвариантов….…33
Глава 2. Преобразование плоскости и пространства….36
2.1 Преобразование плоскости….36
2.2 Композиция отображений….…37
2.3 Линейное отображение….39
2.4 Изменение координат вектора при линейном отображении….39
2.5 Произведение преобразований….…45
2.6 Движение плоскости….….47
2.7 Формулы движений….48
2.8 Виды движений….49
2.9 Поворот. Вращение….53
2.10 Формулы поворота….54
2.11 Центральная симметрия….56
2.12 Осевая симметрия…58
2.13 Теоремы о композиции осевой симметрии….62
2.14 Классификация движений двух осевых симметрий….64
2.15 Группа движений.…67
2.16 Преобразование подобия. Гомотетия….70
Глава 3. Изображение плоских и пространственных фигур при параллельном проектировании….75
3.1 Параллельное проектирование….….76
3.2 Изображение плоских фигур….…74
3.3 Изображение пространственных фигур. Изображение многогранника.79
Заключение….87
Литература…88
-
Дипломная работа:
Методическое обеспечение лекционных занятий по курсу Евклидово пространство
91 страниц(ы)
Введение….…4
Глава 1. Общая теория кривых второго порядка….5
1.1 Общее уравнение кривой второго порядка….51.2 Инварианты кривой второго порядка….11РазвернутьСвернуть
1.3 Асимптотические направления…16
1.4 Пересечение кривой с прямой….18
1.5 Касательная к кривой…20
1.6 Асимптота кривой второго порядка….…21
1.7 Диаметр кривой второго порядка….24
1.8 Центр кривой….25
1.9 Вид уравнения если начало координат совпадает с началом кривой….27
1.10 Вид уравнения если оси координат направлены по сопряженным направлениям относительно кривой….….27
1.11 Главные направления кривой второго порядка….28
1.12 Главные диаметры….….30
1.13 Приведение кривой второго порядка к каноническому виду с помощью инвариантов….…33
Глава 2. Преобразование плоскости и пространства….36
2.1 Преобразование плоскости….36
2.2 Композиция отображений….…37
2.3 Линейное отображение….39
2.4 Изменение координат вектора при линейном отображении….39
2.5 Произведение преобразований….…45
2.6 Движение плоскости….….47
2.7 Формулы движений….48
2.8 Виды движений….49
2.9 Поворот. Вращение….53
2.10 Формулы поворота….54
2.11 Центральная симметрия….56
2.12 Осевая симметрия…58
2.13 Теоремы о композиции осевой симметрии….62
2.14 Классификация движений двух осевых симметрий….64
2.15 Группа движений.…67
2.16 Преобразование подобия. Гомотетия….70
Глава 3. Изображение плоских и пространственных фигур при параллельном проектировании….75
3.1 Параллельное проектирование….….76
3.2 Изображение плоских фигур….…74
3.3 Изображение пространственных фигур. Изображение многогранника.79
Заключение….87
Литература…88
-
Дипломная работа:
114 страниц(ы)
Введение. 5
Глава 1. Топологические пространства. 6
§1. Понятие множества. Характеристика свойств множеств. . . 6§2. Понятия в топологическом пространстве. База топологии. . 7РазвернутьСвернуть
§3. Структура открытых множеств и окрестностей. . . . . . . . 10
§4. Метрические пространства. . . . . . . . . . . . . . . . . . . . 11
§5. Замыкание. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
§6. Внутренние точки, внутренние границы. . . . . . . . . . . . 14
§7. Сепарабельное топологические пространства . . . . . . . . . 16
§8. Индуцированная топология. Отделимые пространства. . . . 18
§9. Непрерывное отображение. . . . . . . . . . . . . . . . . . . . 18
§10. Компактные пространства. . . . . . . . . . . . . . . . . . . . 19
Глава 2. Свойства метрических пространств. 22
§1. Сходящиеся последовательности в метрическом пространстве. 22
§2. Критерий полноты. . . . . . . . . . . . . . . . . . . . . . . . 27
§3. Компактные множества в метрическом пространстве. Теорема
Хаусдорфа. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
§4. Отображение компактных множеств. . . . . . . . . . . . . . 31
§5. Критерий компактности. . . . . . . . . . . . . . . . . . . . . 32
§6. Принцип сжимающих отображений и его применение. . . . . 36
§7. Теорема Бэра. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Глава 3. Мера и измеримые множества. 41
§1. Измеримые множества. Мера. Системы множеств. . . . . . . 41
§2. Cистема множеств в евклидовом пространстве. . . . . . . . 42
§3. Функции множеств. . . . . . . . . . . . . . . . . . . . . . . . 44
§4. Мера и её простейшие свойства. Мера в евклидовом пространстве.
45
§5. Внешняя мера. . . . . . . . . . . . . . . . . . . . . . . . . . . 48
§6. Измеримые множества. . . . . . . . . . . . . . . . . . . . . . 50
§7. Сходимость почти всюду. . . . . . . . . . . . . . . . . . . . . 53
§8. Сходимость по мере. . . . . . . . . . . . . . . . . . . . . . . . 56
§9. Единственность предела. . . . . . . . . . . . . . . . . . . . . 57
Глава 4. Интеграл Лебега. 60
§1. Интеграл Лебега для простых и ограниченных функций на
пространстве с конечной мерой. . . . . . . . . . . . . . . . 60
§2. Свойства интеграла( от ограниченных функций). . . . . . . 63
§3. Определение интеграла Лебега в произвольном случае. . . . 67
§4. Предельный переход под знаком интеграла. . . . . . . . . . . 71
§5. Лемма Фату. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Глава 5. Нормированные и гильбертовы пространства. 75
§1. Нормированное линейное пространство. . . . . . . . . . . . . 75
§2. Конечномерные пространства. Конечномерность и компактность.
Теорема Рисса локальной компактности. . . . . . . . . . . 77
§3. Гильбертово пространство. . . . . . . . . . . . . . . . . . . . 78
§4. Ортогональность и ортогональное дополнение . . . . . . . . 79
§5. Ряды Фурье в гильбертовом пространстве. . . . . . . . . . . 80
Глава 6. Линейные операторы в нормированных пространст-
вах. 83
§1. Линейные операторы, непрерывность, ограниченность. . . . 83
§2. Пространство всех линейных непрерывных операторов. . . . 85
§3. Принцип равномерной ограниченности Банаха – Штейнгауза. 86
§4. Обратные операторы. . . . . . . . . . . . . . . . . . . . . . . 88
§5. Замкнутый оператор. . . . . . . . . . . . . . . . . . . . . . . 90
§6. Теорема Банаха о замкнутом графике. . . . . . . . . . . . . 91
§7. Сопряженные пространства . . . . . . . . . . . . . . . . . . . 94
§8. Сопряженный оператор. . . . . . . . . . . . . . . . . . . . . . 97
§9. Самосопряженный оператор. . . . . . . . . . . . . . . . . . . 98
Глава 7. Спектральная теория операторов. 100
§1. Вполне непрерывный оператор. . . . . . . . . . . . . . . . . . 100
§2. Уравнения первого и второго рода. . . . . . . . . . . . . . . . 101
§3. Альтернативы Фредгольма. . . . . . . . . . . . . . . . . . . . 103
§4. Спектр и резольвента. Теорема Гильберта - Шмидта. . . . . 108
Заключение. 113
Литература 114
-
Дипломная работа:
Развитие навыков словообразования у дошкольников с нарушением речи
63 страниц(ы)
Введение 3
Глава 1. Изучение навыков словообразования у дошкольников с нарушением речи 6
1.1 .Формирование процессов словообразования у детей дошкольного возраста 61.2 .Особенности развития навыков словообразования у дошкольников с общим недоразвитием речи III уровня 14РазвернутьСвернуть
1.3.Приемы формирования навыков словообразования у дошкольников с общим недоразвитием речи III уровня 21
Выводы по главе 1 26
Глава 2. Изучение и коррекция навыков словообразования у дошкольников с общим недоразвитием речи III уровня 28
1.1. Организация и методы исследования 28
1.2. Качественно-количественный анализ результатов 36
1.3. Рекомендации по коррекции развития навыков словообразования у дошкольников с общим недоразвитием речи III уровня 42
Выводы по главе 2 48
Заключение 50
Список литературы 52
Приложение 56
-
Дипломная работа:
Башкирские народные песни и наигрыши «Кахым-туря»
97 страниц(ы)
Введение ….3
Глава I. Участие башкир в исторических событиях .….….11
1.1. Башкиры в военных походах, сражениях и народных восстаниях ….….111.2. Участие башкирских полков в Отечественной войне 1812 года и заграничных походах 1813–1814 гг. …14РазвернутьСвернуть
Глава II. Произведения башкирского устно-поэтического и музыкального народного творчества, посвященные командиру Кахым-туре…24
2.1. Башкирские песни, предания и легенды об участнике Отечественной войны 1812 года командире Кахым-туре ….24
2.2. Музыкально-стилевые особенности башкирских народных песен и наигрышей «Кахым-туря» …. 31
Глава III. Произведения литературы, музыкального, театрального, изобразительного искусства, посвященные командиру Кахым-туре…. 38
Заключение … 46
Список литературы …. 49
Приложения:
1. Башкирские народные песни и наигрыши « Кахым-туря»: музыкально-фольклорный сборник ….58
2. Легенды и предания, поэтические тексты песен «Кахым-туря» ….79
-
Дипломная работа:
58 страниц(ы)
Введение 3
1. Исследование функций с помощью производной
a) Повторение. 4-10
b) Исследование функций с помощью второй производной. 10-12c) Полное исследование функций и построение их графиков. 14-19РазвернутьСвернуть
2. Задачи оптимизации. 19-25
3. Задача нахождения множества значений функции. 25-28
4. Применение производной для решения уравнений и неравенств. 28-34
5. Применение производной к доказательству неравенств. 34-37
6. Применение производной к доказательству тождеств. 37-39
7. Применение производной к приближенным вычислениям. 39-41
8. Применение производной к решению задач на сравнение чисел. 41-44
9. Применение производной к решению задач с параметрами. 44-47
10. Применение производной к доказательству непериодичности 47-49
функций.
11. Применение производной для упрощения выражений и 49-50
разложения на множители.
12. Контрольная работа. 51-54
Заключение 55
Литература 56
-
Курсовая работа:
Применение excel при решении экономических задач
33 страниц(ы)
1.ВВЕДЕНИЕ….…5
2. УПРАВЛЕНИЕ ФАЙЛАМИ….7
2.1. Создание нового документа….7
2.2. Загрузка рабочего документа….….82.3. Сохранение документа….….8РазвернутьСвернуть
2.4. Защита данных….8
3. СТРУКТУРА ДОКУМЕНТОВ….9
3.1. Управление рабочими листами….10
3.2. Добавление рабочих листов….10
3.3. Коррекция высоты строк и ширины столбцов….…11
4. ПОСТРОЕНИЕ ТАБЛИЦ….12
4.1 Форматирование чисел….12
5. ТАБЛИЧНЫЕ ВЫЧИСЛЕНИЯ….12
5.1. Ввод формул….13
6. ПОСТРОЕНИЕ И ОФОРМЛЕНИЕ ДИАГРАММ….14
6.1. Построение диаграмм….14
7. ФУНКЦИИ….15
7.1. Конструктор функций….16
7.2. Редактирование функций….16
8. ПОСТАНОВКА ЗАДАЧИ….17
9.ВХОДНЫЕ ДАННЫЕ….18
10.ВЫХОДНЫЕ ДАННЫЕ….24
10.1. Табличные вычисления….…31
11.СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ….…34
-
Курсовая работа:
Методы половинного и шагового деления Microsoft Excel, MathCAD, Pascal
22 страниц(ы)
1. Введение….3
2. Цель и задачи….4
3. Теория нелинейных уравнений
и метод половинного деления…5
4. Нахождения корней нелинейного уравнения с заданной точностью:4.1. MathCAD….9РазвернутьСвернуть
4.2. Microsoft Excel….12
4.3. Pascal….15
5. Выводы…
6. Список литературы…
-
Дипломная работа:
Матричный метод решения дифференциальных уравнений
50 страниц(ы)
Введение 3
Глава 1. Основные сведения из теории матриц
1. Общие понятия, связанные с понятием матрицы 4
2. Действия над матрицами. Сложение матриц 53.Обратимые матрицы 7РазвернутьСвернуть
4. Элементарные матрицы 8
5. Вычисление обратной матрицы 11
6. Матричная экспонента 12
Глава 2.Матричный метод решения дифференциальных уравнений
1. Дифференцирование и интегрирование матриц 14
2. Построение матричного уравнения, равносильного однородной линейной системе 18
3. Два общих свойства матричного уравнения, соответствующего однородной линейной системе 22
4. Основные свойства интегральной матрицы 24
5. Случай Лаппо-Данилевского 26
6. Сопряженное (присоединенное) матричное уравнение 27
7. Структура фундаментальной системы решений однородной линейной системы дифференциальных уравнений с постоянными коэффициентами 29
8. Приведение однородной линейной системы с постоянными коэффициентами к каноническому виду 36
Примеры 41
Заключение 48
Литература 49
-
Дипломная работа:
Школьный театр как способ организации образовательного пространства
54 страниц(ы)
ВВЕДЕНИЕ ….….….…3-7
ГЛАВА I ТЕОРЕТИЧЕСКИЙ ОБЗОР ИССЛЕДОВАНИЙ ПО ПРОБЛЕМЕ ИСПОЛЬЗОВАНИЯ ТЕАТРАЛЬНОГО ИСКУССТВА В ХУДОЖЕСТВЕННОМ ВОСПИТАНИИ ОБЩЕСТВА ….….8-271.1. История становления и развития театрального искусства от античности до наших дней….…8-16РазвернутьСвернуть
1.2. Роль музыкального театра в художественном воспитании школьников….….17-20
1.3. Сказкотерапия как образовательная система в художественном воспитании школьников…21-26
Выводы по I главе….…27
ГЛАВА II ПЕДАГОГИЧЕСКИЕ УСЛОВИЯ ФОРМИРОВАНИЯ ХУДОЖЕСТВЕННОЙ КУЛЬТУРЫ ШКОЛЬНИКОВ СРЕДСТВАМИ ТЕАТРАЛЬНОГО ИСКУССТВА В СИСТЕМЕ МУЗЫКАЛЬНОГО ОБРАЗОВАНИЯ ….…28-50
2.1 Использование средств театрального искусства в образовательном процессе….28-32
2.2 Организация и результаты опытно-экспериментальной работы….33-46
Выводы по II главе….47
ЗАКЛЮЧЕНИЕ.….….48-50
-
Дипломная работа:
51 страниц(ы)
Введение….3
Глава I. Теоретические основы социализации младших школьников
1.1 Процесс социализации младших школьников….61.2 Особенности развития социальных навыков в младшем школьном возрасте…14РазвернутьСвернуть
Выводы по первой главе…20
Глава II . Социально-педагогические условия развития социальных навыков младших школьников в деятельности социального педагога
2.1 Методика работы социального педагога общеобразовательной школы по развитию социальных навыков младших школьников….21
2.2 Описание опыта работы социального педагога по развитию социальных навыков младших школьников….29
Выводы по второй главе…43
Заключение
Список литературы
-
Курсовая работа:
Эммелин Панкхёрст – борец за права женщин
41 страниц(ы)
Введение
I Биографическая справка
II Общественно – политическая деятельность
1. Обострение борьбы
2. Кризис и раскол в ЖСПС3. Миссия в России и Женская партияРазвернутьСвернуть
4. Болезнь и смерть
Заключение
-
Дипломная работа:
62 страниц(ы)
Введение 3
Глава I. Понятие и сущность сленга в переводоведении 6
1.1. Понятие сленга. Сленг в системе социальных диалектов 61.1.1 Сленг и жаргон 11РазвернутьСвернуть
1.1.2 Сленг и арго 12
1.1.3 Сленг и кэнт 13
1.1.4 Сленг и коллоквиализмы 14
1.1.5 Сленг и профессионализмы 14
1.1.6 Сленг и вульгаризмы 15
1.2. Идиостиль Дж Сэлинджера в романе «Над пропастью во ржи» 16
Выводы к Главе I 25
Глава II. Особенности перевода сленгизмов на материале романа Дж. Сэлинджера «Над пропастью во ржи» 26
2.1. О переводческих трансформациях 26
2.2. Анализ переводческих решений 35
Выводы к Главе II 42
Заключение 44
Список литературы 47
Приложение 51