
«6 задач по статистике (решение)» - Контрольная работа
- 17.12.2013
- 6
- 1847
Содержание
Выдержка из текста работы

Автор: kjuby
Содержание
1. В круг радиуса R наудачу брошена точка. Найдите вероятность того, что эта точка окажется внутри данного вписанного правильного треугольника.
2. В одном ящике 3 белых и 5 черных шаров, в другом ящике – 6 белых и 4 черных шара. Найдите вероятность того, что хотя бы из одного ящика будет вынут белый шар, если из каждого ящика вынуто по одному шару.
3. Группа студентов состоит из 5 отличников, 12 хорошо успевающих и 4 занимающихся слабо. Отличники на предстоящем экзамене могут получить только отличные оценки. Хорошо успевающие студенты могут получить с равной вероятностью хорошие и отличные оценки. Слабо занимающиеся могут получить с равной вероятностью хорошие, удовлетворительные и неудовлетворительные оценки. Для сдачи экзамена вызывается наугад один студент. Найдите вероятность того, что он получит хорошую или отличную оценку.
4. Вероятность выигрыша приза на новогоднем вечере в университете АлтГПА по одному входному билету р=0,01. Сколько нужно купить билетов, чтобы выиграть хотя бы по одному из них с вероятностью Р, не меньшей, чем 0,98?
5. Три стрелка сделали по одному выстрелу в мишень. Вероятности попадания равны 0,6; 0,7; 0,8 соответственно. Составьте ряд распределения числа попаданий в мишень. Найдите математическое ожидание и дисперсию этой величины.
6. Дискретные случайные величины заданы рядами распределения:
xi -2 2 5
P 0,35 0,42 0,23
y -2 1 2
Pi 0,5 0,3 0,2
Составьте ряд распределения случайных величин 1) Y=X2; 2) В=Х-Y.
Выдержка из текста работы
5. Три стрелка сделали по одному выстрелу в мишень. Вероятности попадания равны 0,6; 0,7; 0,8 соответственно. Составьте ряд распределения числа попаданий в мишень. Найдите математическое ожидание и дисперсию этой величины.
Решение: Пусть A- попадание первого стрелка, P(A)=0,6; B-попадание второго стрелка, P(B)=0,7; C –попадание третьего стрелка, P(C)=0,8. Тогда промах первого, P( -промах второго, P( промах третьего, P(
Случайная величина X (X –число попаданий в цель) может принимать несколько значений. Найдем вероятности, с которыми эти значения принимаются.
Тема: | «6 задач по статистике (решение)» | |
Раздел: | Статистика | |
Тип: | Контрольная работа | |
Страниц: | 6 | |
Стоимость текста работы: | 200 руб. |
Закажите авторскую работу по вашему заданию.
- Цены ниже рыночных
- Необходимый уровень антиплагиата
- Прямое общение с исполнителем вашей работы
- Бесплатные доработки и консультации
- Минимальные сроки выполнения
- Пишем сами, без нейросетей
Мы уже помогли 24535 студентам
Средний балл наших работ
- 4.89 из 5
написания вашей работы
Следующая работа
Финансовая математика,вариант 4-
Тест:
Математика - МА, вариант 1 (21 задание по 5 тестовых вопросов)
15 страниц(ы)
Задание 1
Вопрос 1. Что такое матрица?
1. число;
2. вектор;
3. таблица;
4. функция;
5. нет правильного ответа.Вопрос 2. Что означают числа в индексе у элементов матрицы?РазвернутьСвернуть
1. степень;
2. числа, на которые нужно последовательно умножить элемент;
3. порядок матрицы;
4. номер строки и столбца;
5. нет правильного ответа.
Вопрос 3. Сколько свойств определителей Вам известно?
1. 0;
2. 5;
3. 1;
4. 2;
5. 3.
Вопрос 4. Что означает запись размер матрицы (2х4)?
1. матрица нулевая;
2. матрица квадратная;
3. матрица имеет две строки и 4 столбца;
4. определитель матрицы равен 24;
5. нет правильного ответа.
Вопрос 5. Какое из приведенных утверждений верным не является:
1. Определитель не изменится, если его строки поменять местами с соответствующими столбцами;
2. При перестановке двух строк (или столбцов) определитель изменит знак на противоположный, сохраняя абсолютную величину;
3. Определитель с двумя одинаковыми строками и столбцами равен нулю;
4. Общий множитель всех элементов строки или столбца можно выносить за знак определителя; если все элементы какой-то строки или столбца равны 0, то и определитель равен 0;
5. Если к элементам какой либо строки (или столбца) определителя прибавить соответствующие элементы другой строки (или столбца), умноженные на одно и тоже число, то определитель изменит свою величину.
Задание 2
Вопрос 1. Что такое минор М11 для матрицы (3х3)?
1. определитель, составленный из элементов матрицы, путем вычеркивания второй стоки и третьего столбца и взятым со знаком минус;
2. определитель, равный нулю;
3. определитель, составленный из элементов матрицы, путем вычеркивания второй стоки и третьего столбца;
4. определитель, составленный из элементов матрицы, путем вычеркивания первой стоки и первого столбца;
5. нет правильного ответа.
Вопрос 2. Как получить М23?
1. умножить матрицу на два;
2. вычислить определитель матрицы, вычеркнув 1-ю строку и первый столбец;
3. нет правильного ответа;
4. записать определитель, полученный при вычеркивании второй строки и третьего столбца.
5. умножить матрицу на три.
Вопрос 3. Что такое алгебраическое дополнение?
1. Мji;
2. Aiк =(-1)i+к Мiк;
3. определитель матрицы;
4. порядок матрицы;
5. нет правильного ответа.
Вопрос 4. Отметьте формулу разложения определителя 3-го порядка по второй строке?
1. ∆=а11А11 + а12 А12 +а13А13;
2. ∆=а21А21 + а22 А22 +а23А23;
3. ∆=а21А13 + а22 А23 +а31А33;
4. ∆=а11А23 + а12 А13 +а12А33;
5. нет правильного ответа.
Вопрос 5. Можно ли разложить определитель четвертого порядка по первой строке?
1. нет;
2. да;
3. иногда;
4. нет правильного ответа;
5. если 1-й элемент не равен 0.
Задание 3
Продолжить изучение главы 1, пункт 1.2.
Выбрать правильный ответ к вопросу и отметить его в карточке ответов.
Вопрос 1. Можно ли сложить матрицы А (2х3) и В (2х3)?
1. нет;
2. да;
3. только, если все элементы матрицы В=1;
4. иногда;
5. нет правильного ответа.
Вопрос 2. Можно ли сложить матрицы А(2х3) и В(3х4)?
1. нет ;
2. да;
3. всегда;
4. иногда;
5. нет правильного ответа.
Вопрос 3. Какая матрица называется квадратной?
1. матрица, у которой число строк равно числу столбцов;
2. симметрическая;
3. матрица, у которой число строк больше числа столбцов;
4. матрица, у которой число строк меньше числа столбцов;
5. нет правильного ответа.
Вопрос 4. Можно ли умножить матрицу А(2х2) на число С?
1. нет;
2. да;
3. да, при этом определитель увеличится в С раз;
4. нет корректного ответа;
5. да, но только если с=0.
Вопрос 5. Можно ли вычесть матрицу А(2х3) из матрицы В(2х3)?
1. нет;
2. всегда;
3. иногда;
4. если 1-й элемент не равен 0;
5. нет правильного ответа.
Задание 4
Вопрос 1.Что такое нуль – матрица?
1. матрица, все элементы которой – нули;
2. прямоугольная матрица;
3. матрица, на главной диагонали которой находятся нули;
4. единичная матрица;
5. нет правильного ответа.
Вопрос 2. Можно ли перемножить матрицы А(2х2) и В(2х2)?
1. нет;
2. да;
3. только, если все элементы матрицы А=0;
4. иногда;
5. нет правильного ответа.
Вопрос 3. Можно ли выполнить действие А(3х4) х В(4х2)?
1. да;
2. нет;
3. только, если все элементы матрицы В=1;
4. иногда;
5. нет правильного ответа.
Вопрос 4. Можно ли выполнить действие А(2х3) х В(4х2)?
1. да;
2. нет;
3. всегда;
4. иногда;
5. нет правильного ответа.
Вопрос 5. Приведите пример единичной матрицы. Укажите ее порядок.
1.
2. или второго порядка;
3. или третьего порядка;
4. или третьего порядка;
5. нет правильного ответа.
Задание 5
Вопрос 1. Изменится ли квадратная матрица А(3х3), если ее умножить на единичную матрицу?
1. да;
2. нет;
3. она станет нулевой;
4. она станет единичной;
5. нет правильного ответа.
Вопрос. 2. Чему равен определитель единичной матрицы?
1. 0;
2. 1;
3. 2;
4. 3;
5. 18.
Вопрос 3. Что значит транспонировать матрицу?
1. обнулить;
2. элемент с номером ij поместить на место ji и наоборот;
3. умножить на матрицу Е;
4. элементы с номером ii положить равными нулю;
5. элементы с номером ii положить равными 1.
Вопрос 4. Как обозначаются элементы транспонированной матрицы?
1. вij-1;
2. λ вij;
3. в*ij;
4. 5 вij;
5. нет правильного ответа.
Вопрос 5. Чему равно произведение А•А-1?
1. 0;
2. Е;
3. А+А;
4. А*;
5. нет правильного ответа
Задание 6.
Вопрос 1. Можно ли найти обратную матрицу, для матрицы, имеющей Δ=0?
1. можно;
2. нет;
3. всегда;
4. иногда;
5. нет правильного ответа.
Вопрос 2. Что такое матрица системы?
1. нулевая матица;
2. матрица Е;
3. матрица, состоящая из коэффициентов свободных членов;
4. матрица, состоящая из коэффициентов левой части;
5. нет правильного ответа.
Вопрос 3. Что такое матричное уравнение?
1. равенство вида ах2+вх+с=0;
2. равенство вида А•Х=С, где А,Х,С – матрицы;
3. равенство вида у=кх+в;
4. равенство вида 2+18=2;
5. нет правильного ответа.
Вопрос 4. Можно ли решить систему уравнений матричным способом, если определитель матрицы системы равен нулю?
1. да;
2. нет;
3. всегда;
4. иногда;
5. нет правильного ответа.
Вопрос 5. Что такое определитель системы второго порядка?
1. ;
2. ;
3. ;
4. ;
5. нет правильного ответа.
Задание 7.
Вопрос 1. Когда вектора и коллинеарны?
1. когда ≠ 0;
2. когда ≠ 0;
3. скалярное произведение этих векторов равно 0;
4. когда =λ ;
5. нет правильного ответа.
Вопрос 2. Как записать разложение по ортам вектора =АВ, где точки А(3; 5;7) и В(5;9;12)?
1. ;
2. ;
3. ;
4. ;
5. .
Вопрос 3. В каком случае вектора называются линейно независимыми?
1. Если они - коллинеарные;
3. возможно, если хоть один из коэффициентов λ1,…λк ≠ 0;
4. нулевые;
5. нет правильного ответа.
Вопрос 4. Какое выражение называется линейной комбинацией векторов?
1. в = 0;
3. а = (с,d);
4. а – в = d;
5. нет правильного ответа.
Вопрос 5. Могут ли четыре вектора на плоскости быть линейно независимы?
1. да;
2. всегда;
3. иногда;
4. нет правильного ответа.
5. нет.
Задание 8
Вопрос 1. Являются ли векторы–орты компланарными?
1. нет;
2. да;
3. всегда;
4. иногда;
5. нет правильного ответа.
Вопрос 2. Могут ли четыре вектора в трехмерном пространстве быть линейно независимы?
1. да;
2. нет;
3. всегда;
4. иногда;
5. нет правильного ответа.
Вопрос 3. Может ли векторное произведение векторов и лежать в плоскости, образованной этими векторами, если оно не равно нулю?
1. да;
2. нет;
3. иногда;
4. нет правильного ответа.
5. всегда.
Вопрос 4. Что изменится в векторном произведении, если изменить порядок перемножаемых векторов?
1. Порядок компонент (координат) вектора–произведения;
2. знаки компонент вектора-произведения;
3. модуль синуса угла между перемножаемыми векторами;
4. длина вектора-результата;
5. нет правильного ответа.
Вопрос 5. Что Вы можете сказать о координатах векторов и , если они коллинеарны?
1. они равны нулю;
2. их координаты пропорциональны;
3. они положительны;
4. они отрицательны;
5. нет правильного ответа.
Задание 9
Вопрос 1. Смешанное произведение это вектор или скаляр (то есть число)?
1. вектор;
2. матрица;
3. скаляр;
4. 0;
5. нет правильного ответа.
Вопрос 2. Скалярное произведение – это число или вектор?
1. число;
2. вектор;
3. вектор и число;
4. 0;
5. 1;
Вопрос 3. Чему равен модуль (длина) векторного произведения и ?
1. площади параллелограмма, построенного на векторах, как на сторонах;
2. 0;
3. 1;
4. модуля вектора ;
5. 2.
Вопрос 4. Векторное произведение – это число или вектор?
1. число;
2. вектор;
3. вектор и число;
4. 0;
5. 1;
Вопрос 5. Чему равен модуль смешанного произведения векторов ?
1. 0;
2. объему параллелепипеда, построенного на векторах ;
3. 1;
4. объему пирамиды, построенной на векторах ;
5. нет правильного ответа.
Задание 10
Вопрос 1. Укажите уравнение прямой на плоскости с угловым коэффициентом?
1. у=кх+ в;
2. х2+у2=5;
3. у-у0=3(х-х0);
4.
5. х2 +у=0;
Вопрос 2. Верно ли, что уравнение второй степени задаёт прямую на плоскости ?
1. да;
2. нет;
3. всегда;
4. иногда;
5. нет правильного ответа.
Вопрос 3. Укажите уравнение пучка прямых, проходящих через точку (х0, у0).
1. у=кх+в;
2. у-у0 =к (х-х0);
3. ;
4. 3х=5у+2;
5. нет правильного ответа
Вопрос 4. Укажите общее уравнение прямой на плоскости.
1. у=3х+2;
2. Ах+Ву+С=0;
3. у=2х+3;
4. х2+у2=5;
5. нет правильного ответа.
Вопрос 5. Укажите уравнение прямой, содержащее координаты двух точек, через которые она проходит.
1. ;
2. у=кх+в;
3. х2 +2у=0;
4. у=2х+3;
5. нет правильного ответа.
Задание 11
Вопрос 1. Укажите каноническое уравнение прямой на плоскости.
1. х=2;
2. , где (m,n) – направляющий вектор;
3. у=2х;
4. у=5;
5. нет правильного ответа.
Вопрос 2. Укажите уравнение плоскости, проходящей через три заданные точки А(х1у1z1) А(х2у2z2) А(х3у3z3)/
1. ;
2. Ах+Ву+Сz+D=0;
3. z=5;
4. х+у-z=0;
5. нет правильного ответа.
Вопрос 3. Укажите общее уравнение плоскости в пространстве.
1. 2х2+3у+z+5=0;
2. Ах+Ву+Сz+D=0;
3. Ах+Ву+С=0;
4. Z=0;
5. нет правильного ответа.
Вопрос 4. Укажите каноническое уравнение прямой, проходящей через точку М0(х0у0z0) и имеющей направляющий вектор L(Lx,Lу,Lz).
1. у=х –L;
2. ;
3. ;
4. х - Lx +y - Lу +z - Lz =0;
5. нет правильного ответа.
Вопрос 5. Являются ли плоскости 2х+3у+7z+5=0 и 10х+15у+7z+5=0 параллельными?
1. да;
2. нет;
3. иногда;
4. только при определенных значениях переменных;
5. нет правильного ответа.
Задание 12
Вопрос 1. Отметьте каноническое уравнение окружности.
1. у=кх+в;
2. у=const=C;
3. у=5;
4. (х-х0)2+(у-у0)2=R2;
5. нет правильного ответа.
Вопрос 2. Укажите каноническое уравнение эллипса.
1. у2+2х+у0=0;
2. (х-х0)(у-у0)=0;
3. ;
4. нет правильного ответа;
5. .
Вопрос 3. Укажите каноническое уравнение гиперболы.
1. ;
2. у=2х;
3. (у-у0)2= (х-х0) 2;
4. у=0;
5. нет правильного ответа
Вопрос 4. Укажите каноническое уравнение параболы с директрисой, перпендикулярной Ох.
1. у=3х+5;
2. (у-у0)2=2p(х-х0);
3. у=5;
4. все ответы верны;
5. нет правильного ответа.
Вопрос 5. Какие прямые являются асимптотами гиперболы?
1. ;
2. у=Z;
3. у=5;
4. х=2;
5. нет правильного ответа.
Задание 13
Вопрос 1. В каком случае можно определить обратную функцию?
1. когда каждый элемент имеет единственный прообраз;
2. когда функция постоянна;
3. когда функция не определена;
4. когда функция многозначна;
5. нет правильного ответа.
Вопрос 2. Что называется функцией?
1. число;
2. правило, по которому каждому значению аргумента х соответствует одно и только одно значение функции у;
3. вектор;
4. матрица;
5. нет правильного ответа.
Вопрос 3. Какая функция называется ограниченной?
1. обратная;
2. функция f(x) называется ограниченной, если m ≤ f(x) ≤ M;
3. сложная;
4. функция f(x) называется ограниченной, если f(x) › 0;
5. функция f(x) называется ограниченной, если f(x) ≤ 0;
Вопрос 4. Какая точка называется предельной точкой множества А?
1. нулевая;
2. т.х0 называется предельной точкой множества А, если в любой окрестности точки х0 содержатся точки множества А, отличающиеся от х0;
3. не принадлежащая множеству А;
4. нет правильного ответа;
5. лежащая на границе множества.
Вопрос 5. Может ли существовать предел в точке в том случае, если односторонние пределы не равны?
1. да;
2. иногда;
3. нет;
4. всегда;
5. нет правильного ответа.
Задание 14
Вопрос 1. Является ли функция бесконечно малой при х→∞?
1. да;
2. нет;
3. иногда;
4. всегда;
5. нет правильного ответа.
Вопрос 2. Является ли функция бесконечно большой при х→∞?
1. да;
2. нет;
3. иногда;
4. если х=0;
5. нет правильного ответа.
Вопрос 3. Является ли функция у=sin x бесконечно большой при х→∞?
1. да;
2. нет;
3. иногда;
4. всегда;
5. нет правильного ответа.
Вопрос 4. Является ли функция у=cos x бесконечно большой при х→∞?
1. да;
2. нет;
3. иногда;
4. всегда;
5. нет правильного ответа.
Вопрос 5. Является ли функция у=tg x бесконечно большой в т. х0=0?
1. да;
2. нет;
3. всегда;
4. иногда;
5. нет правильного ответа.
Задание 15
Вопрос 1. Является ли произведение бесконечно малой в точке х0 функции на функцию ограниченную, бесконечно малой в точке х0?
1. нет;
2. да;
3. иногда;
4. не всегда;
5. нет правильного ответа.
Вопрос 2. В каком случае бесконечно малые α (х) и β(х) называются бесконечно малыми одного порядка в точке х0?
1. если они равны;
2. если ;
3. если ;
4. если их пределы равны 0;
5. нет правильного ответа.
Вопрос 3. Чему равен предел константы С?
1. 0;
2. Е;
3. 1;
4. ∞;
5. с.
Вопрос 4. Сколько видов основных элементарных функций мы изучили?
1. 5;
2. 1;
3. 0;
4. 2;
5. 3.
Вопрос 5. Является ли степенная функция непрерывной на всей области определения?
1. нет;
2. да;
3. иногда;
4. при х >1;
5. нет правильного ответа.
Задание 16
Вопрос 1. Укажите формулу первого замечательного предела.
1.
2.
3. ;
4. у´=кх+в;
5. нет правильного ответа.
Вопрос 2. Укажите формулу второго замечательного предела.
1. 0;
2.
3.
4.
5.
Вопрос 3. Если f(x0+0)=f(x0-0)=L, но f(x0) ≠ L, какой разрыв имеет функция?
1. нет правильного ответа;
2. 2-го рода;
3. устранимый;
4. неустранимый;
5. функция непрерывна.
Вопрос 4. Какие функции называются непрерывными?
1. бесконечно малые;
2. удовлетворяющие условиям: а) f определима в т. х0 б) существует и равен f(x0);
3. бесконечно большие;
4. степенные;
5. тригонометрические.
Вопрос 5. Какой разрыв имеет f(x) в т. х0, если f(x0-0)≠ f(x0+0), и не известно: конечны ли эти пределы?
1. устранимый;
2. неустранимый;
3. функция непрерывна;
4. 1-го рода;
5. 2-го рода.
Задание 17
Вопрос 1. Сформулируйте свойство непрерывности сложной функции.
1. сложная функция непрерывна всегда;
2. если функция u=g(х) непрерывна в точке х0 и функция у=f(u) непрерывна в точке u=g(х0), то сложная функция у=f(g(x)) непрерывна в точке х0.
3. сложная функция, являющаяся композицией непрерывных функций не является непрерывной;
4. сложная функция разрывна;
5. сложная функция является композицией непрерывных функций и имеет устранимый разрыв.
Вопрос 2. Является ли функция у=(1-х2)3 непрерывной на множестве всех чисел?
1. нет;
2. да;
3. при х >1;
4. иногда;
5. нет правильного ответа.
Вопрос3. Что такое производная функции?
1. Предел значения этой функции;
2.
3. 0;
4. 1;
5. е.
Вопрос 4. Какая функция является дифференцируемой в точке х=4 ?
1.
2. ln(x-4);
3. имеющая производную в точке х=4 ;
4. непрерывная в точке х=4;
5. нет правильного ответа.
Вопрос 5. Какая функция называется дифференцируемой на интервале (а,в)?
1. дифференцируемая в каждой точке этого интервала;
2. разрывная в каждой точке интервала;
3. постоянная;
4. возрастающая;
5. убывающая.
Задание 18
Вопрос 1. Чему равна производная функции у=х5?
1. 0;
2. 1;
3. е;
4. 5х4;
5. нет правильного ответа.
Вопрос 2. Найти вторую производную от функции у=sin x.
1. cos x;
2. -sin x;
3. tg x;
4. 1;
5. 0.
Вопрос 3. Как называется главная, линейная часть приращения функции?
1. производная;
2. дифференциал (dу);
3. функция;
4. бесконечно малая;
5. бесконечно большая.
Вопрос 4. Какие виды неопределенностей можно раскрыть при помощи правила Лопиталя?
1. ;
2. ∞ - ∞;
3. 00;
4. ∞0;
5. С х 0.
Вопрос 5. Сформулируйте правило Лопиталя.
1. ;
2. , если предел правой части существует;
3. ;
4. нет правильного ответа;
5. .
Задание 19
Вопрос 1. Функция f(x) – непрерывная и дифференцируемая в точке х0. Является ли х0 точкой максимума, если:
1. f(x) > f(x0) для всех x из некоторой окрестности х0;
2. f(x) < f(x0) для всех x из некоторой окрестности х0;
3. f '(x0) = 0;
4. f "(x0) = 0;
5. f '(x) при переходе через x0 меняет знак с – на +.
Вопрос 2. Функция f(x) – непрерывная и дифференцируемая в точке х0. Является ли х0 точкой перегиба, если:
1. f '(x0) = 0;
2. f "(x0) = 0;
3. f "(x) при переходе через x0 не меняет знак;
4. f '(x) при переходе через x0 меняет знак;
5. нет правильного ответа.
Вопрос 3. Найдите промежутки возрастания функции y = x3 – 2x2 – 15x – 10.
1. (- 5/3; 3);
2. (- ∞ ; - 5/3) U (3; + ∞);
3. (- ∞ ; - 3) U (5/3; + ∞);
4. (- 3; 5/3);
5. нет правильного ответа.
Вопрос 4. Сколько точек перегиба у графика функции y = (x1/2 + 3) 2 ?
1. 3;
2. бесконечно много;
3. 1;
4. 2;
5. ни одной.
Вопрос 5. Найти вертикальную асимптоту функции
1. x = 1;
2. x = -1;
3. x = 4;
4. x = -4;
5. нет асимптот.
Задание 20
Вопрос 1. Какая функция называется функцией двух переменных?
1. f(x);
2. z=f(x,у);
3. нет правильного ответа;
4. n=f(x,у,z);
5. f(x)=const=c.
Вопрос 2. Вычислить предел функции .
1. 0;
2. 29;
3. 1;
4. 5;
5. 2.
Вопрос 3. Вычислить предел функции
1. 1;
2. 0;
3. 16;
4. 18;
5. 20.
Вопрос 4. Какие линии называются линиями разрыва?
1. прямые;
2. состоящие из точек разрыва;
3. параболы;
4. эллипсы;
5. нет правильного ответа.
Вопрос 5. Найти первую производную по у от функции z=3x+2у.
1. 3;
2. 2;
3. 0;
4. 5;
5. нет правильного ответа.
Задание 21
Вопрос 1. Во сколько этапов проходит процесс выбора решений в исследовании операций?
1. 2;
2. 4;
3. 5;
4. 1;
5. 3.
Вопрос 2. Какой метод не относится к методу решения задач линейного программирования?
1. Симплексный;
2. Комбинированный;
3. Модифицированный симплексный;
4. Графический;
5. Нет правильного ответа.
Вопрос 3. В каком виде должны быть представлены ограничения в общей задаче для решения ее графическим методом?
1. уравнение;
2. неравенства;
3. уравнения и неравенства;
4. тождества;
5. нет правильного ответа.
Вопрос 4. В каком виде должны быть представлены ограничения в общей задаче для решения ее симплексным методом?
1. неравенство;
2. уравнения и неравенства;
3. уравнения;
4. тождества;
5. нет правильного ответа.
Вопрос 5. На чем основан графический метод решения задач математического программирования?
1. Построения графика целевой функции и нахождение ее наибольшего или наименьшего значения;
2. Построения графиков условий ограничений и нахождения многоугольника решений;
3. нахождение точек пересечения целевой функции с условиями ограничений;
4. исследование целевой функции на экстремум;
5. нет правильного ответа. -
Контрольная работа:
Математические методы финансового анализа. Вариант № 6
7 страниц(ы)
Задания для выполнения контрольной работы.
Задание 1
Вклад в сумме Рден. ед. положен в банк на n месяцев с ежемесячным начислением процентов по номинальной годовой ставке, равной j%. Определить наращенную сумму с учетом сохранения ее покупательной способности и реальный чистый доход вкладчика, если ожидаемый месячный темп инфляции равен: а) h1 %; б) h2%. Определить реальную доходность операции в виде эффективной процентной ставки.Вариант Р j n h1% h2%РазвернутьСвернуть
6 1500 22% 5 1.5% 2.0%
Задание2
Имеются два векселя: один номинальной стоимостью S1ден. ед. и датой погашения Т1, а другой – номинальной стоимостью S2 ден. ед. и датой погашения Т2. Эти векселя заменяются одним векселем с продлением срока до даты Т3. Изменение осуществляется с использованием простой годовой учетной ставки d%. Определить номинальную стоимость нового векселя.
Вариант S1 S2 d T1 T2 T3
6 150000 300000 10% 25.01.00 06.04.2009 01.11.00
Задание 3
Магазин продал товар, предоставив покупателю кредит в сумме Dден. ед. с ежемесячным начислением на непогашенный остаток процентов по ставке j% годовых. Долг с процентами должен погашаться в течение n месяцев равными частями, выплаты в конце каждого месяца (иными словами – вся задолженность погашается равными срочными уплатами). Требуется:
1. Определить размер ежемесячных платежей, общие расходы заемщика по погашению кредита и сумму выплаченных процентов.
2. Составить план погашения кредита по месяцам, в который включить остаток долга на начало каждого месяца, ежемесячный взнос, проценты за месяц, сумму в счет погашения долга.
3. Определить реальную доходность операции для кредитора в виде эффективной годовой ставки сложного процента.
4. Пусть магазин продал товар, предоставив покупателю следующие условия кредита: в момент выдачи кредита на сумму D были начислены проценты за весь срокnмесяцев, исходя из простой годовой ставкиj%, и вся задолженность должна была погашаться равными ежемесячными выплатами в конце месяца. Определить размер выплат и доходность этой операции для магазина, выраженную в виде эффективной годовой ставки сложного процента.
5. Выразить доходность этой операции в виде эффективной годовой ставки сложного процента как функцию от времени кредита, определить оптимальный (для магазина) срок с точки зрения максимизации доходности.
6. Сравнить результаты для кредитора и должника по двум видам кредита и привести соответствующие выводы. При какой простой годовой процентной ставке второй вид кредита будет финансово эквивалентен первому?
7. Определить реальную доходность операции для кредитора для двух видов кредита в виде годовой ставки сложного процента, если прогнозируемый ежемесячный темп инфляции составляет h% .
Вариант D j% n h%
6 10000 16% 6 1.8%
-
Дипломная работа:
Защита прав в гражданском процессе по законодательству Российской Федерации
83 страниц(ы)
Введение …
Глава I. Процессуальное представительство как правовой институт защиты гражданских прав и охраняемых законом интересов…. … ….§ 1 Понятие, субъекты, основания возникновения представительства .РазвернутьСвернуть
§ 2 Адвокат как судебный представитель …
Глава II. Представитель в гражданском судопроизводстве как защитник гражданских прав и интересов…. ….
§ 1 Полномочия представителя на стадии возбуждения дела и подготовки дела к судебному разбирательству.…
§ 2 Представитель в суде первой инстанции….
§ 3 Представитель в суде апелляционной и кассационной инстанции.
§ 4 Представитель в суде надзорной инстанции и на стадии пересмотра дела по вновь открывшимся или новым обстоятельствам судебных постановлений, вступивших в законную силу…
Заключение ….
Список литературы ….
Приложение № 1 Адвокатский ордер….
Приложение № 2 Доверенность….
Приложение № 3 Доверенность…
-
Тест:
Математика и информатика (код – МФИ), вариант 2 (36 заданий по 5 тестовых вопросов)
34 страниц(ы)
Задание 1
Вопрос 1. Какая система счисления использовалась в первых ЭВМ для кодирования информации?
1) десятичная;2) двоичная;РазвернутьСвернуть
3) троичная;
4) пятеричная;
5) семеричная.
Вопрос 2. Какое это число: 2 • 73 + 3 • 72 + 5 • 7 + 6?
1) (874)10;
2) (2356)7;
3) (11444)5;
4) все предыдущие ответы верны;
5) нет правильного ответа.
Вопрос 3. Запишите в римской нумерологии число 1510:
1) MDX;
2) IMDX;
3) XDM;
4) IMVCX;
5) MVMX.
Вопрос 4. Можно ли выполнить арифметическое действие с числами, записанными в разных системах счисления? (выберите наиболее общий ответ):
1) да, если оба числа записать в системе одного из них;
2) да, если оба числа записать в десятичной системе;
3) да, если оба числа записать в одной и той же системе счисления (любой);
4) нет, ни при каких условиях;
5) только сложение и вычитание.
Вопрос 5. Выполните действие (2562)7 –(1614)7
1) (948)7:
2) (2523)7;
3) (645)7;
4) (948)10;
5) нет правильного ответа.
Задание 2
Вопрос 1. Какая система счисления, вероятнее всего, не имела анатомического происхождения?
1) двоичная;
2) двенадцатеричная;
3) шестидесятеричная;
4) пятеричная;
5) все системы счисления имели анатомическое происхождение.
Вопрос 2. Какое из чисел записано в непозицнониой системе счисления?
1) XXII;
1) (27)g;
2) (100011)2;
3) все числа записаны в не позиционных системах счисления;
4) все числа записаны в позиционных системах счисления.
Вопрос 3. Какое число содержит 500 сотен?
1) 5000000;
2) 500000;
3) 50000;
4) 5000;
5) 500.
Вопрос 4. Сравните числа (11010)2 и (26)10:
1) (11010)2 = (2б)10;
2) (11010)2 ≠ (26)10;
3) (11010)2<(26)10;
4) (11010)2 >(2б)10;
5) все ответы верны.
Вопрос 5. Используя таблицу умножения для шестеричной системы счисления, выполните действие: (25) 6 (13)6
1) (373)6;
2) (413) 6,
3) (325)6;
2) (405)6
4) (1301)б.
Задание 3.
Вопрос 1. Поверхность земного шара составляет 5,1 * 108 км2. Запишите это число, используя поразрядную запись:
1) 5100000000;
2) 5 100 000 000;
3) 510000000;
4) 510 000 000;
5) 51 000 000.
Вопрос 2, Запишите число (10)10 в троичной системе счисления;
1) 101
2) 11;
2) 21;
3) 10;
3) 201.
Вопрос 3. Сколько десятков содержится в числе шестьдесят семь тысяч?
1) 6;
2) 67;
3) 670;
4) 6700;
5) 67000.
Вопрос 4. Поставьте знак между числами (33)5 и (27)8, так, чтобы получилось верное выражение:
1) =
2) ≠
3) >
4) <
5) верны ответы 2 и 4.
Вопрос 5. Используя таблицу умножения для шестеричной системы счисления, выполните действие (250)6: (10)6
1) (25)10
2) (25)6
3) (17)10;
4) (17)6;
5) верны ответы 2 и 3.
Задание 4
Вопрос 1. Какое это число: 2 * 103 + 3 * 102 + * 4 * 10 + 5
1) (2345)10;
2) 2000300405;
3) 2 000 300 405;
4) (2345)5
5) нет правильного ответа,
Вопрос 2. Запишите число (12345)5 в десятичной системе счисления
1) 12345;
2) 975;
3) 24690;
4) 123410;
5) нет правильного ответа.
Вопрос 3. Похожи ли правила для выполнения арифметических действий в разных системах счислений?
1) да;
2) нет;
3) похожи только для сложения;
4) похожи только для сложения и вычитания;
5) действия выполняются только в десятичной системе, в других системах выполнить действия нельзя.
Вопрос 4. Выполните действие: (42301)5 + (1234)5;
1) (44040)5;
2) (43535)5
3) (43030)5;
4) (43535)10;
5) нет правильного ответа.
Вопрос 5. Какая из таблиц соответствует таблице сложения для троичной системы счисления?
1)
2)
3)
4)
5) Нет правильного ответа.
Задание 5.
Вопрос 1. Почему в Древней Греции числа назывались фигурными?
1) они составлялись из фигур на доске или земле;
2) их запись была фигурной (красивой);
3) они выкладывались камешками в виде геометрических фигур;
4) они символизировали различные фигуры;
5) слова «фигура» и «число» были синонимами в древнегреческом языке.
Вопрос 2. Что означает свойство замкнутости множества относительно какого-либо арифметического действия
1) с числами из данного множества действие выполнимо;
2) с числами из данного множества действие невыполнимо;
3) с числами из данного множества действие выполнимо и его результат принадлежит данному множеству;
4) с числами из данного множества действие выполнимо, но его результат не принадлежит данному множеству;
5) ни одно из вышеперечисленных объяснений неверно.
Вопрос 3. Найдите иррациональное число:
4) 160,2
5) е0
Вопрос 4. Найдите корни уравнения (9х2 + 1)(х + 1) =0
1) -1; ± 1/3i
2) -1; -1/9
3) 1; -1/9
Вопрос 5. Даны два комплексных числа: а = -4 + 3i b = 12 + 5i. Найдите |a|, |b|
1) 25; 169;
2) 5; 169:
3) 25; 13;
4) 5; 13;
1) нет верного ответа.
Задание 6
Вопрос 1. Какая наука была первой построена как аксиоматическая теория?
1) теория чисел;
2) арифметика;
3) философия;
4) математика;
5) геометрия.
Вопрос 2. Найдите высказывание, соответствующее теореме о делении с остатком:
1) 65 = 15*4 + 5;
2) 65 : 4 = 15 (ост. 5);
3) 65 = 15*3+20;
4) 65 = 65*0 + 65;
5) все равенства соответствуют теореме.
Вопрос 3. Какое из множеств не является расширением множества натуральных чисел?
1) комплексные числа;
2) рациональные числа;
3) иррациональные числа;
4) целые числа;
5) вещественные числа.
Вопрос 4. Даны два комплексных числа: а = -4 + 3i b = 12 + 5i. Найдите a + b, a - b
1) 8 + 8i; -16 – 8i;
2) 8 + 8i; -16 – 2i;
Вопрос 5. Найдите простое число, пользуясь признаками делимости:
1) 759 077;
2) 220 221;
3) 524 287;
4) 331 255
5) 442 874.
Задание 7
Вопрос 1. Какие понятия являются основными в теории чисел по аксиоматике Д. Пеане?
1) множество, натуральное число;
2) множество натуральных чисел, элемент множества натуральных чисел, отношение «непосредственно следовать за.»;
3) множество, элемент множества, наличие единицы;
4) натуральное число, сложение натуральных чисел;
5) натуральное число, отношение «стоять между.».
Вопрос 2, Найдите дробь, не равную дроби 7/9:
1) 14/18
2) 0,7
3) 0,(7)
4) 7а/9а
5) 0,7777…
Вопрос 3. Сколько корней имеет уравнение х6 = - 64?
1) ни одного;
2) 1;
3) 2,
4) 3;
5) 6.
Вопрос 4. Даны два комплексных числа а = -4 + 3i b = 12 + 5i. Найдите a * b.
1) 33 + 16i
2) 63 + 16i;
3) 33 + 16i
4) 48 + i;
5) 63 + 16i.
Вопрос 5. Какое из перечисленных множеств не является полной системой вычетов по модулю 5?
1) 0,1,2.3,4;
2) 1,2,3,4,5;
3) -5,-4,-3,-2,-1;
4) 0,3,22,37,99;
5) 1,7,13,19,20.
Задание 8
Вопрос 1. Какие свойства выполняются во множестве натуральных чисел?
1) свойства 0 при умножении;
2) ассоциативность и коммутативность сложения;
3) дистрибутивность деления относительно вычитания;
4) свойства 0 при сложении;
5) все вышеперечисленное.
Вопрос 2. Найдите число, не стоящее между 2/7 и 4/9
1) 3/8
2) 0,(28);
3) 20/63
4) 0,45;
5) 0,375.
Вопрос 3. Найдите корни уравнения (х2 - 5)(х2 + 25) = 0:
1) 5 и-25;
5) √5 и - √5
Вопрос 4. Даны два комплексных числа
1) 1,32-2,24i;
2) 1,32 + 2,24i;
3) -1,32+2,24i;
4) 1,32-2,24i;
5) нет верного ответа.
Вопрос 5. Дан многочлен Р(х) = х10 + Зх7 - 13х5 + 14х + 21. Определите, какой остаток получится при делении Р(9) на 8?
1) остатка не будет;
2) 2;
3) 4;
4) 7;
5) определить невозможно.
Задание 9
Вопрос 1. Множество А задано характеристическим условием: Какое оно?
1) ограниченное сверху;
2) ограниченное снизу;
3) пустое;
4) непустое;
5) бесконечное.
Вопрос 2. Среди представленных пар множеств найдите равные:
1) {1,3, 5, 7, 9} и {9, 7, 5,3, 1};
2) {@, #, $, %, &, } и {@, #, $, %, №};
3)
4) {статьи, составляющие Конституцию РФ} и {статьи, составляющие Гражданский кодекс РФ};
5) все представленные множества разные.
Вопрос 3. А - множество натуральных чисел, кратных 2, В - множество натуральных чисел, кратных 3, С - множество натуральных чисел, кратных 6. Укажите верные включения:
1) А с В, В с С;
2) В c А, В с С;
3) А с С, В с С;
4) С е А, С с В;
5) С с А. В с А.
Вопрос 4. А - множество корней уравнения Зх2 - 12х - 15 = 0, В - множество корней уравнения х2 - Зх - 10 = 0. Найдите А \ В,
1) {-2,-1,5};
2) {5,-1,5,-2};
3) {5};
4) {-1,-2};
5) {-1}.
Вопрос 5. В шахматном турнире участвуют 8 спортсменов. Они должны разыграть приз по «олимпийской» системе, то есть разделиться на пары. Как называется граф, отражающий схему игр такого турнира?
1) нуль-граф;
2) дерево;
3) полный граф;
4) дополнительный граф;
5) эквивалентный граф.
Задание 10
Вопрос 1. Закончите определение: «Непустое множество - это множество, мощность которого.». Выберите наиболее полный ответ.
1) = 0;
2) ≠ 0;
Вопрос 2. В шахматном турнире участвуют 8 спортсменов. Как называется геометрическая интерпретация турнирной таблицы?
1) график;
2) диаграмма;
3) схема;
4) граф;
5) ломаная.
Вопрос 3. А - множество корней уравнения Зх2 - 12х - 15 = 0, В - множество корней уравнения х2 - Зх - 10 = 0. Найдите А В:
1) {-2,-1,5};
2) {5,-1,5,-2};
3) {5};
4) {-1,-2};
5) {-1}.
Вопрос 4. А - множество чисел кратных 7, В - множество чисел кратных 3, С - множество чисел кратных 2. Опишите множество (А В) \ С:
1) это числа кратные 7;
2) это числа кратные 3;
3) это числа кратные 2;
4) это числа кратные 21;
5) это числа кратные 42.
Вопрос 5. Известно декартово произведение X х Т = {(М, А), (К, В), (М, В), (К, А)}. Определите множества А и В:
1) Х={А,В};Т={М,К};
2) Х={М, К};Т={А, В};
3) Х={А,А, В, В};Т={М. К, М,К};
4) Х={М, К,М, К};Т={А,В, В, А};
5) нет верного ответа.
Задание 11
Вопрос 1. Что нужно задать (начертить или записать) для того, чтобы строго определить граф, не являющийся нуль-графом?
1) Таблицу футбольных соревнований;
2) Ломанную кривую линию;
3) Набор точек и набор линий, их соединяющих;
4) Начертить несколько пересекающихся линий;
5) Поставить несколько точек и обозначить их буквами.
Вопрос 2. Найдите свойства множества рациональных чисел Q:
1) конечно, ограниченно, замкнуто относительно сложения;
2) бесконечно, ограниченно, замкнуто относительно вычитания;
3) конечно, ограниченно снизу, незамкнуто относительно деления;
4) бесконечно, неограниченно, незамкнуто относительно умножения;
5) бесконечно, неограниченно, замкнуто относительно сложения, вычитания, умножения и деления.
Вопрос 3. А - множество корней уравнения Зх2 - 12х -15 = 0, В - множество корней уравнения х2 - Зх - 10 = 0. Найдите А В.
1) {-2,-1,5};
2) {5,-1,5,-2};
3) {5};
4) {-1,-2};
5) {-1}.
Вопрос 4. О какой операции над множествами идет речь в следующей задаче: в актовом зале 200 кресел расставлены в 10 одинаковых рядов, сколько кресел в каждом раду?
1) объединение;
2) пересечение;
3) дополнение:
4) разбиение на классы;
5) декартово произведение.
Вопрос 5. n{А) = 7, А х В = Ø. Чему равно n(В)?
1) 7;
2) 0;
3) 1;
4) 49;
5) нет верного ответа.
Задание 12
Вопрос 1. Закончите определение: «Бесконечное множество - это множество, мощность которого.
1) = 0;
2) ≠ 0;
3) = ∞
Вопрос 2. Найдите подмножество множества {10,20,30.100}
1)
2) {10,30,50,70,90};
3) (1,2,3,. .10};
4)
5) верны ответы 2 и 4.
Вопрос 3. В шахматном турнире участвуют 8 спортсменов. Они должны разыграть приз по «круговой» системе, то есть каждый спортсмен должен сыграть с каждым из противников. Сколько вершин имеет граф, отражающий схему игр такого турнвзра?
1) это зависит от общего количества игр, которые должны быть сыграны;
2) это зависит от количества проведенных игр;
3) это зависит от того, все ли участники вступили в игры;
4) по количеству участников турнира - 8;
5) нет правильного ответа.
Вопрос 4. Из множества X = {1, 2,3, 4, 5, б, 7, 8, 9, 10, 11, 12} выделены три подмножества. В каком из следующих случаев множество X оказалось разделено на классы?
1) Х1 = {1,3,5, 7, 9, 11},Х2= {2.4,6,8, 10, 12},Х3 = 0;
2) X1 = {1, 2, 3, 4, 5}, X2 = {5, 6, 7, 8, 9}, Х3 = {9, 10, 11, 12};
3) Х1= {0, 1,2, 3,4},Х2 = {5,6,1, 8},Х3 = {9, 10, 11, 12};
4) Х1 = {1,2,3,5, 7,11}, Х2 = {4,6,8,9, 10, 12}, Х3 = {3, 9, 12};
5) X1 = {1,4,7, 10},Х2 = {2,5, 8, 11},Х3= {3,6,9, 12}.
Вопрос 5. К населенному пункту ведут 3 дороги. Сколькими способами можно въехать и выехать из него?
1) 9;
2) б;
3) 3;
4) 1;
5) нет верного ответа.
Задание 13
Вопрос 1. Закончите определение: « Конечное множество - это множество, мощность которого.». Выберите наиболее полный ответ:
1) = 0;
2) ≠ 0;
3) = ∞
4) ≠ ∞
2) = 10.
Вопрос 2. Запишите языком логических символов определение множества ограниченного СНИЗУ:
1) (М - ограничено снизу)
2) (М - ограничено снизу)
3) (М - ограничено снизу)
4) (М - ограничено снизу)
5) (М - ограничено снизу)
Вопрос 3. Найдите множества А и В, такие что
1) А - множество чисел, кратных 5, В - множество чисел кратных 7;
2) А = (4, 5,6, 7,8}, В = {1,2,3, 4, 5};
3)
4) А - множество решений уравнения х2 - 12х + 35 = 0, В - множество решений уравнения х2 - 8х + 15 = 0;
5) все ответы верны.
Вопрос 4. В шахматном турнире участвуют 8 спортсменов. Они должны разыграть приз по «круговой» системе, то есть каждый спортсмен должен сыграть с каждым из противников. Какой граф отразит схему игр в конце турнира?
1) куль-граф;
2) дерево;
3) полный граф;
4) дополнительный граф;
5) эквивалентный граф.
Вопрос 5. В школе 70 учеников. Из них 27 ходят в драмкружок, 32 поют в хоре, 22 увлекаются спортом. В драмкружке 10 ребят из юра, в хоре 6 спортсменов, в драмкружке 8 спортсменов. 3 спортсмена посещают и драмкружок, и хор. Сколько ребят не ноют в хоре, не посещают драмкружок и не занимаются спортом?
1) 64;
2) 58:
3) 12;
4) 6;
5) нет верного ответа.
Задание 14
Вопрос 1. На множестве действительных чисел введено бинарное отношение . Какими свойствами оно обладает?
1) рефлексивность;
2) антирефлексивность;
3) симметричность;
4) транзитивность;
5) эквивалентность.
Вопрос 2, На множестве множеств введена операция объединения. Какими свойствами она обладает?
1) коммутативность;
2) ассоциативность;
3) наличием нейтрального элемента;
4) всеми вышеперечисленными;
5} ни одним из вышеперечисленных.
Вопрос 3. На множестве целых чисел введена операция нахождения модуля числа. Какого вида эта операция?
1) унарная;
2) бинарная;
3) тернарная;
4) п-арная;
5) нахождение модуля нельзя рассматривать как операцию.
Вопрос 4. На множестве матриц 2x2 введена операция сложения. Для матрицы найдите
обратный элемент.
1)
2)
3)
4)
5) нет верного ответа.
Вопрос 5. Является ли множество векторов с операцией сложения аддитивной абелевой группой?
1) да;
2) нет, так как нет нейтрального элемента;
3) нет, так как нельзя ввести обратный элемент;
4) нет, так как сложение векторов некоммутативно;
5) нет, так как множество не замкнуто относительно операции сложения.
Задание 15
Вопрос 1. На множестве квадратов натуральных чисел введено бинарное отношение . Какими свойствами оно обладает?
1) рефлексивность;
2} антирефлексивность;
3) сюшетрячность;
4) транзитивность;
5) эквивалентность.
Вопрос 2. На множестве множеств введена операция вычитания. Какими свойствами она обладает?
1) коммутативность;
2) ассоциативность;
3) наличием нейтрального элемента;
4) всеми вышеперечисленными;
5) ни одним из вышеперечисленных.
Вопрос 3. На множестве векторов введена операция сложения. Найдите нейтральный элемент;
!) e(1, l);
2) е (0, 1);
3) е {1,0);
4) е(0,0);
5) нейтрального элемента нет.
Вопрос 4. на множестве матриц 2x2 введена операция сложении. Какими свойствами она обладает?
1) коммутативность;
2) ассоциативность;
3) наличием нейтрального элемента;
4) всеми вышеперечисленными;
5) ни одним из вышеперечисленных.
Вопрос 5. Пусть М = . Найдите истинное высказывание:
1) (М; +) - абелева группа;
2) <М; •) - абелева группа;
3) (М; +; •) - поле;
4) (М; +) - не является абелевой группой;
5) {М; +) - мультипликативная группа.
Задание 16
Вопрос 1. Дано множество чисел: . Найдите разбиение этого множества на классы эквивалентности:
1)
2)
3)
4) все представленные разбиения верны;
5) ни одно из представленных разбиений не является верным.
Вопрос 2. На множестве множеств введена операция пересечения. Найдите нейтральный элемент для этой операции:
4) любое одноэлементное множество;
5) нейтрального элемента по этой операции нет.
Вопрос 3. На множестве векторов введена операция сложения. Найдите элемент у, обратный вектору х (х1, х2):
1)
2) у(-х1,-х2);
Вопрос 4. Какое из множеств может образовать аддитивную группу?
3) N - множество натуральных чисел;
4) Q+ - множество рациональных положительных чисел;
5) Q+ {0} - множество рациональных положительных чисел с нулем,
Вопрос 5. Почему множество многочленов Р(х) не является группой по операции умножения?
1) множество незамкнуто относительно операции умножения:
2) нет нейтрального элемента по умножению;
3) нет обратного элемента по умножению;
4) умножение многочленов неассоциативно;
5) умножение многочленов некоммутативно.
Задание 17
Вопрос 1. На множестве высказываний В введено отношение импликации (или следования): истинное высказывание). Какими свойствами не обладает это отношение?
1) рефлексивность;
2) симметричность;
3) транзитивность;
4) эквивалентность;
5) не обладает ни одним из вышеперечисленных свойств.
Вопрос 2. На множестве действительных чисел введена операция возведения в степень: bа. Какими свойствами она обладает?
1) коммутативность;
2) ассоциативность;
3) наличием нейтрального элемента;
4) всеми вышеперечисленными;
5) ни одним из вышеперечисленных.
Вопрос 3. На множестве матриц 2x2 введена операция сложения. Найдите нейтральный элемент:
1)
2)
5) нет верного ответа.
Вопрос 4. Какое из множеств может образовать мультипликативную группу?
3) N - множество натуральных чисел;
4) Q+ - множество рациональных положительных чисел;
5) Q+ {0} - множество рациональных положительных чисел с нулем,
Вопрос 5. На множестве квадратов натуральных чисел введена операция сложении. Чем является алгебраическая структура ?
1) аддитивной группой;
2) мультипликативной группой;
3) абелевой группой;
4) полем;
5) не является ни группой, ни полем.
Задание 18
Вопрос 1. Согласно теореме о разложении многочленов на множители, разложите на множители следующий многочлен: 2а3 + а2 - а;
1) а(2а-1)(а+1);
2) 2а(а-1)(а+1);
3) 2а(а + 0,5)(а-1);
4) а(2а+ 1)(а-1);
5) 2(а-0,5)(а+1).
Вопрос 2. Выполните деление многочлена 18х5 - 54х4 - 5х3 - 9х2 - 26х + 16 на многочлен Зх3 - 7х - 8;
1) многочлены нацело не делятся;
2) 6х3-4х2 + 5х-2;
3) 6х3-4х2-5х-2;
4) бх3+4х2 + 5х+2:
5) 6х3-4х2 + 5х + 2.
Вопрос 3. Выделите целую часть из рациональной дроби
1)
2)
Вопрос 4. Решите уравнение х3 – 12х + 16 = 0:
1) {-2; 2; -4};
2) (2; 4};
3) {2; 2;-4};
4) {2; 2: 4};
5) {2;-4}.
Вопрос 5. Найдите пару чисел, не являющуюся корнем уравнения 3х - у = 0:
1)
2)
3)
4)
5)
Задание 19
Вопрос 1. Согласно теореме о разложении многочленов на множители, разложите на множители следующий многочлен: х3-12х + 16:
1) (х-2)(х + 4);
2) (х-2)2(х + 4);
3) (х + 2)(х-4);
4) (х + 2)2(х - 4);
5) (х-2)(х + 4)2.
Вопрос 2. Выполните деление многочлена х4 + 3x3 - 35х2 - 39х + 70 на многочлен х2 + 2х - 35
1) х2 + х-2;
2) х2-х + 2;
3) 2х2 + 2х-4;
Вопрос 3. Выделите целую часть из рациональной дроби
3)
4)
5) нет верного ответа.
Вопрос 4. Решите уравнение х6 - 64 = 0:
1) {-2;2};
2) {-8; 8};
3) 2 корня третьей кратности 2 и - 2;
4) 6 совпадающих корней, равных 2;
5) корней нет.
Вопрос 5. Найдите общее решение диофантова уравнения 12х - 5у = 45
1} х = -5р; у = -9-12р;
2) х = 5-5р; у = 3- 12р;
3) х = -5-5р; у = -21-12р;
4) все решения неверны;
5) все решения верны.
Задание 20
Вопрос 1. Согласно теореме о разложении многочленов на множители, разложите на множители следующий многочлен: х - 64:
1) (х3 - 8)(х3 + 8);
2) (х2 - 4)(х2 + 4х + 16);
3) (х-8)(х + 8);
4) (х-4)(х + 4х+1б);
5) (х-2)3(х + 2)3.
Вопрос 2. Сократите дробь .
1)
5) -2x3-51.
Вопрос 3. Разложите рациональную дробь на простейшие:
1)
2)
Вопрос 4. Решите уравнение х6 - 28х3 + 27 = 0:
1) {1,3};
2) {1; 1; 1;3;3;3);
3) {1;27};
Вопрос 5. Найдите истинное высказывание:
1) для р = 6, q = 3, решением уравнения Пифагора будет являться тройка (36, 27, 45);
2) тривиальным решением уравнения Пифагора является тройка чисел (14, 48, 50):
3) тривиальным решением уравнения Пифагора будет решение при р = 7, q = 1, так как 7 и 1 взаимно просты;
4) тройка чисел (9, 40, 43) является пифагоровой тройкой;
5) все высказывания истинны.
Задание 21
Вопрос 1. Согласно теореме о разложения многочленов на множители, разложите на множители следующий многочлен
1) (х-1)(х-27);
2) (х3-1)(х3-27);
3) (х-1)(х-3)(х2 + х + 1)(х2 + Зх + 9);
4) (х+1)(х + 27);
5) (х + 1)(х + 3)(х2 - х + 1)(х2 - Зх + 9).
Вопрос 2. Сократите дробь
3)
Вопрос 3. Разложите рациональную дробь на простейшие
4)
5) нет верного ответа.
Вопрос 4. Для уравнения х5 - 4х3 + 2х2 + Зх -2 = 0 выберите неверное утверждение:
1) действительные корни этого уравнения могут быть равны только- 1, 1, -2 или 2;
2) уравнение имеет 5 комплексных корней;
3) уравнение равносильно уравнению (х – 1)3(х + 1)(х + 2) = 0;
4) множество корней уравнения {- 2; - 1; 1};
5) сумма корней уравнения равна 0.
Вопрос 5. В чем заключается Великая Теорема Ферма?
1) Уравнение хn + уn = zn не имеет решений;
2) Уравнение хn + уn = zn не имеет решений в целых числах;
3) Уравнение хn + уn = zn не имеет решений в натуральных числах;
4) Уравнение хn + уn = zn имеет решения для n = 2;
5) Уравнение хn + уn = zn для n > 2 не имеет решений в натуральных числах;
Задание 22
Вопрос 1. Сколько трехзначных чисел можно записать, используя цифры 0, 1, 3, б, 7, 9, если каждая из них может быть использованы в записи только один раз?
1) 18;
2) 20;
3) 100;
4) 120;
5) 216.
Вопрос 2. Брошены две игральные кости. Найти вероятность того, что сумма выпавших очков будет не меньше 5:
1) 1/6
2) 5/6
3) 5/18
4) 13/18
5) Нет верного ответа.
Вопрос 3. В ящике имеются 15 деталей, среди которых 10 окрашенных. Сборщик наудачу извлекает три детали. Найдите вероятность того, что извлеченные детали окажутся окрашенными:
1) 10/15
2) 2/3
3) 24/91
4) 91/24
5) 1/5
Вопрос 4. По мели произведено 500 выстрелов, причем зарегистрировано 455 попаданий. Найти статистическую вероятность попаданий в цель:
1) 0.9
2) 0.91
3) 0.8
4) 0.09
5) 0.455
Вопрос 5. Вероятность одного попадания в цель при одном залпе из двух орудий равна 0,38. Найти вероятность поражения цели при одном выстреле первым орудием, если известно, что для второго орудия эта вероятность равна 0,8:
1) 0.380
2) 0.700
3) 0.800
4) 0.304
5) 0.572
Задание 23
Вопрос 1. Пассажир оставил вещи в автоматической камере хранения, а когда пришел получать, выяснилось, что он забыл номер. Он только помнит, что в номере были числа 23 и 37. Чтобы открыть камеру, нужно правильно набрать пятизначный номер. Какое наибольшее количество номеров нужно перебрать, чтобы открыть камеру?
1) 2
2) 3
3) 10
4) 30
5) 60
Вопрос 2. Брошены две игральные кости. Найти вероятность того, что сумма выпавших очков будет равна 8, а разность 4.
1) 1/18
2) 5/36
3) 1/9
4) 5/9
5) 17/18
Вопрос 3. Устройство состоит из 5 элементов, из которых два изношены. При включении устройства включаются случайным образом два элемента. Найти вероятность того, что включенными окажутся неизношенные элементы.
1) 0,3;
2) 0,4
3) 0,5
4) 0,6
5) 0,7
Вопрос 4. При испытании партии приборов частота годных приборов оказалось равной 0,9. Найти число годных приборов, если всего было проверено 200 приборов:
1) 180;
2) 200
3) 9
4) 18
5) 20
Вопрос 5. Среди 100 лотерейных билетов есть 5 выигрышных. Найти вероятность того, что 2, выбранные наудачу, билета окажутся выигрышными.
1) 1/100
2) 5/100
3) 4/10
4) 2/100
5) 1/495
Задание 24
Вопрос 1. В роте имеется 3 офицера и 40 солдат. Сколькими способами может быть выделен наряд из одного офицера и 3 солдат?
1) 4940;
2) 9880;
3) 29640;
4) 59280;
5) 177840.
Вопрос 2. Какова вероятность, что в выбранном наудачу двузначном числе цифры одинаковы?
1) 0,09;
2) 0,9;
3) 0,01;
4) 0,1;
5) 9/91.
Вопрос 3. Набирая номер телефона, абонент забыл последние три цифры и, помня лишь, что эти цифры различны, набрал их наудачу. Найти вероятность того, что набраны нужные цифры:
1) 0,3;
2) 0,5;
3) 1/3
4) 1/240
5) 1/720
Вопрос 4. Для сигнализации об аварии установлены два независимо работающих сигнализатора. Вероятность того, что при аварии сработает первый сигнализатор равна 0,95. Для второго эта вероятность равна 0,9. Найти вероятность того, что при аварии сработает только один сигнализатор:
1) 0,140;
2) 0,005;
3) 0,855;
4) 0,860;
5) 0,995.
Вопрос 5. Студент знает 20 из 25 вопросов программы. Найти вероятность того, что студент знает три вопроса, предложенные ему экзаменатором:
1) 4/5
2) 57/115
3) 3/115
4) 2/23
5) 19/23
Задание 25
Вопрос 1. Сколько различных перестановок букв можно сделать в слове «колокол»?
1) 12;
2) 24;
3) 420;
4) 210;
5) 5040.
Вопрос 2. Брошены 3 игральные кости. Найти вероятность того, что на всех гранях одинаковое количество очков:
1) 1/6
2) 1/216
3) 1/36
4) 1/180
5) 1/30
Вопрос 3. На складе имеются 15 телевизоров. Из них 10 марки SHARP, остальные - марки SONV. Найти вероятность того, что среди 5 телевизоров, взятых случайным образом на проверку качества, три окажутся телевизорами марки SHARP:
1) ≈0,2
2) ≈≈0,3
3) ≈0,4
4) ≈0,5
5) ≈0,6
Вопрос 4. Для сигнализации об аварии установлены два независимо работающих сигнализатора. Вероятность того, что при аварии сработает первый сигнализатор равна 0,95. Для второго 'эта вероятность равна 0,9. Найти вероятность того, что при аварии сработает хотя бы один сигнализатор.
1) 0,140;
2) 0,005;
3) 0,855;
4) 0,860;
5) 0,995.
Вопрос 5. Три стрелка попадают в мишень соответственно с вероятностями 0,85, 0,8, 0,7. Найти вероятность того, что при одном выстреле хотя бы один из них попадет в мишень:
1) 0,476;
2) 0,108
3) 0,991
4) 0,428;
5) 0,009
Задание 26.
Вопрос 1. Найдите функцию
1)
2)
Вопрос 2. Найдите первообразную функции f(x) = 4х3 -1, такую что F(2) = 12:
1) F(x) = x4-x + 6;
2) F(x) = x4-x-2;
3) F(x) = x4-4;
4) F(x) = x4-x + 2;
5) F(x) = 4x3-20.
Вопрос 3. Вычислите интеграл
1) x2 + 2ln|x2-4| + C;
2) 0,5х2 + 2 1n(х + 2) + 2 1n(х - 2) + С;
Вопрос 4. Вычислите интеграл sinx dx:
1) x-sin x + cos x + C;
2) x-cos x + sin x + C;
3) x-sin x - sin x + C;
4) x-cos x + sin x + C;
5) x-sin x - sin x + C.
Вопрос 5. Найдите площадь криволинейной трапеции, ограниченной линиями
1) 9;
2) 12;
3) 4;
4) 20;
5) 20,25.
Задание 27
Вопрос 1. Найдите функцию h(x), являющуюся комбинацией трех функций, если h(x) = f(g(v(x))), f{x) = , g(x) =sinx, v(x) = x3:
4)
5)
Вопрос 2. Найдите интегральную кривую функции f(x) = 2cos x, проходящую через точку (0; 2):
1) F(x) = 2sin x - 2sin 2;
2) F{x) = - 2sin x + 2;
3) F(x) = 2cos x;
4) F(x) = - 2cos x + 4;
5) F(x) = 2sin x + 2.
Вопрос 3. Вычислите интеграл :
1)
2)
Вопрос 4. Вычислите интеграл x dx:
1) x ∙ ln x - x + C;
2) x ∙ ln x + x + C;
3) x ∙ ln x + x + C;
4) x ∙ ln x-x + C;
5) –x ∙ ln x - x - C.
Вопрос 5. Найдите площадь криволинейной трапеции, образованной графиками функций у = , у = 0, х = 9:
1; 2;
2) 6;
3) 17;
4) 18;
5) 27.
Задание 28
Вопрос 1. Найдите производную функции у = 2х2 - sin x:
1) y' = 4x + cosx;
2) у' = 2х - sin x;
3) у' = 4х2 - sin x;
4) у' = 4х2 + cos x;
5) y' = 4x-cosx.
Вопрос 2. Вычислите интеграл
3)
Вопрос 3. Вычислите интеграл
1)
2)
Вопрос 4. На рисунке изображена криволинейная трапеция. С помощью какого интеграла можно вычислить ее площадь?
1)
2)
3)
4)
5) Нет верного ответа.
Вопрос 5. Вычислите интеграл
1) 40;
2) 21;
3) 20;
4) 42;
5) 0.
Задание 29
Вопрос 1. Найдите производную функции у = ln(х2 + х):
1) у' = х+1;
4)
5)
Вопрос 2. График одной их первообразных F1 функции проходит через точку (1; 2), второй первообразной F2 - через точку (8; 4). Найдите разность первообразных:
1) F1-F2= l;
2) F1-F2 = -3;
5) Верны ответы 1 и 4.
Вопрос 3. Вычислите интеграл :
1) ln|x + l| + ln|x-6| + C;
2)
3)
Вопрос 4. На рисунке изображена криволинейная трапеция. Графиками каких функций она ограничена?
1) у = cos х, у = 0;
2) у = sin x, у = 0;
3) y = tg x, y = 0;
4) y = ctg x, у = 0;
5) нет верного ответа.
Вопрос 5. Вычислите интеграл :
1)
Задание 30
Вопрос 1. Сколько битов в одном байте?
1) 2
2) 3;
3) 8;
4) 10;
5) 256.
Вопрос 2. В учебном пособии описан алгоритм интегрирования рациональных дробей. Каким способом задан этот алгоритм?
1) словесно;
2) формулой;
3) блок-схемой;
4) алгоритмическим языком;
5) таблицей.
Вопрос 3. Среди структурных элементов блок-схем найдите «следование».
1)
2)
3)
4)
5)
Вопрос 4. Среди структурных элементов блок-схем найдите «цикл с постусловием».
1)
2)
3)
4)
5)
Вопрос 5. Светло-серым цветом в текстовом меню выделены команды, которые
1) в данный момент доступны;
2) в данный момент недоступны;
3) в данный момент удалены;
4) в данный момент выполняются;
5) заданы по умолчанию.
Задание 31
Вопрос 1. Сколько байтов составляет 1 Килобайт?
1) 8;
2) 100;
3) 256;
4) 1000;
5) 1024.
Вопрос 2. Каким математическим понятием можно описать структуру размещения информации в ПК?
1) множество;
2) блок-схема;
3) граф;
4) файловая система;
5) двоичная система счисления.
Вопрос 3. Среди структурных элементов блок-схем найдите «неполную альтернативу».
1)
2)
3)
4)
5)
Вопрос 4. Дана блок-схема алгоритма. Определите, алгоритм какой задачи на ней записан:
1) Сколько положительных чисел учащийся ввел с клавиатуры?
2) Сколько положительных чисел находится во множестве X?
3) Сколько отрицательных чисел учащийся ввел с клавиатуры?
4) Сколько отрицательных чисел находится во множестве X?
5) Ни одна из задач не соответствует блок-схеме.
Вопрос 5. При вводе текста в WORD клавишу надо нажимать:
1) в конце каждой строки;
2) в начале абзаца;
3) в конце абзаца;
4) в конце последней строки экрана;
5) в конце каждой страницы.
Задание 32
Вопрос 1. Сколько байтов составляют 24 бита?
1) 2,4;
2) 3;
3) 12;
4) 48;
5) 192.
Вопрос 2. В учебном пособии описан алгоритм интегрирования рациональных дробей. Каким свойством не обладает этот алгоритм, если его пользователем является ученик начальной школы?
1) массовость;
2) определенность;
3) понятность;
4) дискретность;
5) результативность.
Вопрос 3. Среди структурных элементов блок-схем найдите «полную альтернативу»
1)
2)
3)
4)
5)
Вопрос 4. Алгоритм вычисления значений какой функции задан таблицей?
1) у=12х-7;
2) у = Зх2 + 1;
3)
Вопрос 5. При вводе формулы в текстовом редакторе WORD нужно:
1) использовать путь файл - вставка - формула;
2) использовать путь вставка - объект - символ;
3) использовать путь вставка - объект - Microsoft Equation 3.0;
4) по возможности описать ее словами;
5) заменить символы другими значками.
Задание 33
Вопрос 1. Переведите 20480 байтов в килобайты.
1) 20,48;
2) 2048;
3) 2;
4) 20;
5) 2560.
Вопрос 2. Необходимо найти значения по известным значениям переменной х. Какой способ записи алгоритма использован?
1) словесный;
2) табличный;
3) схематичный;
4) формульный;
5) языковой.
Вопрос 3. Среди структурных элементов блок-схем найдите «цикл с предусловием»:
1)
2)
3)
4)
5)
Вопрос 4. Каким способом задан следующий алгоритм:
1) словесно;
2) формулой;
3) блок-схемой;
4) алгоритмическим языком;
5) таблицей.
Вопрос 5. Слово «бифидобактерия» зашифровано. В результате получен шифротекст: «ЭЕРЕАКЭЪЖОБМЕЫ». Какой шифр применен к данному тексту?
1) «цифирная азбука», где каждой букве русского алфавита соответствует буква этого же алфавита, стоящая под таким же номером, считая с конца;
2) «сцитапь» с кодом 4;
3) «шифр Виженера» с кодовым словом ТАЗ;
4) «шифр Цезаря» со сдвигом - 4;
5) «квадрат Политая» с кодовой матрицей 2x7.
Задание 34
Вопрос 1. Комбинация клавиш - используется для выделения:
1) строки;
2) фрагмента от начала строки до курсора;
3) фрагмента от курсора до конца строки;
4) слова справа от курсора;
5) слова слева от курсора.
Вопрос 2. Команды редактирования текста находятся в группе:
1) файл:
2) правка;
3) вид;
4) вставка;
5) формат.
Вопрос 3. Укажите правильную формулу для EXCEL:
1) =7А1:2;
2) =7*А:2;
3) =7*А1:2;
4) =7*А1/2;
5) 7*А1/2.
Вопрос 4. Если в записи формулы допущена синтаксическая ошибка, то в текущей ячейке EXCEL появится сообщение:
1) #ЗНАЧ!
2) #ЗНАЧ?
3) #ИМЯ!
4) #ИМЯ?
5) #ЧИСЛО!
Вопрос 5. Зашифруйте слово «математика», используя шифр Виженера, и ключевое слово БЕДА:
1) ПГХЗПГХЛНГ;
2) ОВФЖОВФКМВ;
3) АКИТАМЕТАМ;
4) КЪМЯКЪМГИЪ;
5) ОЁЧЁОЁЧЙМЁ.
Задание 35
Вопрос 1. Команда «номера страниц» находится в группе:
1) окно;
2) вставка;
3) вид;
4) таблица;
5) формат.
Вопрос 2. Для ввода символа в текстовом редакторе WORD нужно использовать путь:
1) вставка - символ;
2) файл - разрешения - неограниченный доступ;
3) формат - автоформат;
4) окно - упорядочить все;
5) вид - колонтитулы.
Вопрос 3. Пользователь ввел в ячейку EXCEL формулу «=2*А1+3». Какой вид будет иметь эта формула при копировании ее в ячейку, находящуюся ниже исходной:
1) =2А1+3;
2) =3*А1+3;
3) =2*В1+3;
4) =2*А1+4;
5) =2*А2+3.
Вопрос 4. За какое максимальное количества шагов можно построить диаграмму в EXCEL?
1) 1;
2) 2;
3) 3;
4) 4;
5) 5.
Вопрос 5. Дешифруйте следующую фразу: 19.21.17 6.5.33.20 15.1 16.2.6.5, Известен ключ шифра: каждая буква алфавита обозначена своим порядковым номером.
1) два шага до дома;
2) три раза по пять;
3) кто идет по полу;
4) суп едят на обед;
5) что могу то дело.
Задание 36
Вопрос 1. Для построения таблицы в текстовом редакторе WORD нужно использовать путь:
1) таблица - вставить строку;
2) таблица - удалить столбец;
3) таблица - вставить таблицу или нарисовать таблицу;
4) вставка - объект - таблица;
5) правка - вставить.
Вопрос 2. Команда сохранения документа находится в группе:
1) файл;
2) справка;
3) сервис;
4) формат;
5) вид.
Вопрос 3. В качестве разделителя между целой и дробной частями десятичной дроби в русской версии EXCEL используется:
1) точка;
2) запятая;
3) пробел;
4) точка с запятой;
5) двоеточие.
Вопрос 4. В поле имени EXCEL показан:
1) адрес первой ячейки;
2) адрес текущей ячейки;
3) название используемой функции;
4) номер текущей строки;
5) название текущего столбца.
Вопрос 5. Дешифруйте текст, используя матрицу 6x4: «сдкезетеибажожвесеоесзтк»:
1) семь раз отмерь и один отрежь;
2) кто рано встает, тому бог дает;
3) и зимой, и летом одним цветом;
4) сто одежек и все без застежек;
5) висит груша, а нельзя скушать. -
Контрольная работа:
Контрольное задание №1 по английскому
8 страниц(ы)
Выполнение задания 1
I. Переведите текст на русский язык.
FAIRS AND EXHIBITIONS
Every year a lot of international, national and specialized exhibitions and fairs are held in different countries of the world. The number of countries and companies which take part in them is growing fr om year to year and the scope of fairs and exhibitions is becoming larger.The display during these exhibitions includes a wide range of exhibits which show the latest achievements in different field of industry, science and agriculture of many countries.РазвернутьСвернуть
Usually fairs and exhibitions are crowded with visitors, who show much interest in the exhibits on display.
At international and national exhibitions commercial centres are established where participants can negotiate the sale and the purchase of different goods.
Every exhibition helps visitors to see the achievements of different countries. It is also a method to advertise products. Fairs and exhibitions are usually held under various mottoes: people and progress, peace and progress through economic cooperation and so on. International fairs and exhibitions pave the way for the consolidation of friendship among countries and nations.
Пояснения к тексту
exhibition — выставка
fair — ярмарка
to take part in smth. — принимать участие в чем-то
scope — количество
display — показ, демонстрация
wide range — широкий круг
to hold an exhibition, a fair — организовать выставку, ярмарку
achievement — достижение
to be crowded with people — быть заполненным людьми
motto — девиз
visitor — посетитель
participant — участник
to advertise — рекламировать
goods — товары
products — продукция
to pave the way for… — прокладывать дорогу к…
exhibit — экспонат
II. Перепишите вопросы к тексту, переведите их, дайте развернутые ответы на английском языке.
1. What kind of exhibitions and fairs are held every year?
2. What does the display during the exhibitions include?
3. Wh ere are commercial centres established?
4. What does every exhibition help all visitors to see?
5. What are usual mottoes of the exhibitions and fairs?
6. For what do international fairs and exhibitions pave way?
III. Перепишите предложения, поставьте в местах пропусков нужный артикль, переведите предложения.
1. The Ukrainian exhibition held in New York in 1994 was … great success.
2. All the newspapers wrote about … success of the Ukrainian exhibition.
3. We are proud of … progress which is made by our country in … field of … heavy industry.
4. The fair was held under . motto: . Peace and . progress to all nations.
5. … industry of Ukraine has … difficulties at . present time.
6. This year we must present . new model of . equipment on . world market.
IV. Переведите диалог на русский язык.
Last month, Mr. Boichuk, an engineer from Ukrimport, had instructions to visit an exhibition of electronic equipment which was held at Olimpia in London. (Olimpia — большой выставочный зал в Лондоне).
Ukrimport was interested in purchasing computers of the latest model.
The model R 800 computer of “Wilson and Co.” attracted Boichuk’s attention. After he had seen the computer in operation he got in touch with Mr. Adams, the Sales Manager of the company, to start talks for the purchase of computers.
B: Good morning, Mr. Adams. Here is my card.
A: Good morning. I’m glad to meet you. How do you like our stand?
B: Oh, it’s really interesting. We’ve had a happy chance to see your latest achievements in electronic industry. I must say you’ve made much progress in this field.
A: Glad to hear that.
B: Mr. Adams, your stand-attendant has just shown me the Model 800 computer in operation. Is it for sale?
A: Certainly. It’s an up-to-date model. It was introduced into the world market six months ago and since then has been a great success. So I’m not surprised you got interested in it.
B: Yes, I was impressed by its efficient performance and I liked the finish too.
A: The computer meets the highest world standards.
B: But as you know, Mr. Adams, to buy a computer is only half the business. You must have your own operators and programmers to operate the equipment. I’d like to know if it will be possible to send our specialists here so that they could get good training at your plants.
A: No problem to arrange it.
B: Fine. As soon as I come back to Kyiv we’ll send you our inquiry.
Пояснения к тексту
to attract smb’s attention — привлечь чье-то внимание
to get in touch with smb. — связаться с кем-то
Sales Manager — коммерческий директор
stand — стенд
stand-attendant — консультант у стенда
is it for sale? — продается ли он?
to be a great success — иметь большой успех
efficient performance — эффективная работа
to meet world standards — отвечать мировым стандартам
to purchase — закупать
programmer — программист
training — обучение
inquiry — запрос
finish — обработка, оформление
up-to-date model — современная модель
V. Перепишите вопросы к тексту, переведите их, дайте расширенные ответы на английском языке.
1. What is the working position of Mr. Boichuk?
2. What instructions did Mr. Boichuk have?
3. In what was Ukrimport interested?
4. What attracted Mr. Boichuk’s attention?
5. With who did Mr. Boichuk get in touch after he had seen the computer?
6. What did Mr. Adams tell Mr. Boichuk about the Model 800?
7. What did Mr. Boichuk promise to do when he would come back to Kyiv?
VI. Перепишите предложения. Поставьте в местах пропуска нужные предлоги. Переведите предложения на русский язык.
1. Many different exhibitions are held … our country every year.
2. Ukraine will take part … this fair next year.
3. The scope … fairs and exhibitions is becoming larger.
4. Our country is interested … this equipment.
5. We want to buy the computers . the latest model.
6. Mr. Boichuk wanted to get . touch . Mr. Adams.
7. Exhibitions and fairs are held … different mottoes.
8. Exhibitions and fairs pave the way … peace and co-operations … peoples .
9. This country has a great success … the field of heavy industry.
10. To buy the computer is only half … the business.
VII. Перепишите предложения и переведите их на английский язык.
1. Много различных выставок и ярмарок проводится в мире ежегодно.
2. Много фирм и компаний принимает участие в выставках.
3. Любая выставка — это способ рекламы продукции фирм.
4. Украина приняла участие в выставке электронного оборудования в Лондоне в прошлом году.
5. Сколько специализированных выставок будет проведено в Киеве в этом году?
6. Фирма заинтересована в покупке компьютеров этой модели.
-
Курсовая работа:
Преступления, посягающие на сохранность государственной тайны
35 страниц(ы)
Введение.
Глава I. КЛАССИФИКАЦИЯ ПРЕСТУПЛЕНИЙ, ПОСЯГАЮЩИХ НА СОХРАННОСТЬ ГОСУДАРСТВЕННОЙ ТАЙНЫ. ПОНЯТИЕ, КЛАССИФИКАЦИЯ СВЕДЕНИЙ, СОСТАВЛЯЮЩИХ ГОСУДАРСТВЕННУЮ ТАЙНУ1. Классификация преступлений, посягающих на сохранность государственной тайныРазвернутьСвернуть
2. Понятие государственной тайны
ГЛАВА II. АНАЛИЗ ПРЕСТУПЛЕНИЙ ПОСЯГАЮЩИХ НА СОХРАННОСТЬ ГОСУДАРСТВЕННОЙ ТАЙНЫ ИХ КВАЛИФИКАЦИЯ И УГОЛОВНАЯ ОТВЕТСТВЕННОСТЬ ЗА ИХ СОВЕРШЕНИЕ
1. Анализ и квалификация ст. 275 УК «государственная измена»
2. Анализ и квалификация ст. 276 УК «шпионаж»
3. Анализ и квалификация ст. 283 УК «разглашение государственной тайны»
4. Анализ и квалификация ст. 284 УК «утрата документов, содержащих государственную тайну»
Заключение.
Список используемой литературы
-
Контрольная работа:
Ноосфера. Значение, образование, распространение.
11 страниц(ы)
1. Контрольный теоретический вопрос.
Ноосфера. Значение, образование, распространение.
2. Контрольные тестовые задания1) Установите соответствие характера инструктажа по техникеРазвернутьСвернуть
безопасности предлагаемым условиям.
2) К нормативным актам системы управления и правового
регулирования безопасности жизнедеятельности относятся:
1. Стандарты предприятия.
2. Инструкции по охране труда.
3. Стандарты Системы стандартов безопасности труда.
4. Отраслевые стандарты.
5. Опытно-конструкторские разработки в области создания средств индивидуальной и коллективной защиты работников.
3) В зависимости от содержания информации выделяются следующие типы памяти:
1. Моторная.
2. Смысловая.
3. Механическая.
4. Эмоциональная.
5. Образная.
3. Практическая ситуация.
У человека сильный ожог. Расскажите о правилах оказания первой
помощи (с учетом площади поражения и степени ожога).
-
Контрольная работа:
Правовое регулирование прекращения Трудового договора. Трудовое право, вариант 23 (Академия ФСО)
16 страниц(ы)
Теоретическое задание
Выполнить задание «Правовое регулирование прекращения Трудового договора»
Практическое заданиеНарисовать схему «Административная ответственность за нарушение трудового законодательства» .РазвернутьСвернуть
Тестовое задание
Дать ответ на контрольные тесты (выберитe правильный или наиболее полный ответ)
Задание 1
По истечении срока коллективного договора его действие:
1. прекращается
2. автоматически продлевается на тот же срок
3. автоматически продлевается на неопределенный срок
Задание 2
Для приведенных ниже вопросов выберите подходящие ответы:
А. включение работников (их представителей) в процесс принятия работодателем управленческих решений, затрагивающих интересы работников
В. создание и осуществление деятельности комиссий по трудовым спорам
С. переговоры, которые проводятся между работодателем, организациями работодателей, с одной стороны, и одной или несколькими организациями работников - с другой, в целях заключения правового акта, регулирующего социально - трудовые отношения.
Д. обсуждение представителями работников и работодателя вопросов регулирования социально-трудовых отношений
Задание 3
Соглашения могут быть:
1. как двусторонними, так и трехсторонними
2. только двусторонними
3. только трехсторонними
Задание 4
Для приведенных ниже вопросов выберите подходящие ответы:
А. нормы, устанавливающие особые правила применения общей нормы по отношению к определенным категориям работников
В. нормы, устанавливающие, что то или иное правило не применяются к определенным категориям работников
С. нормы, устанавливающие какие-либо новые правила, применяемые к определенным категориям работников
Задание 5.
Задача.
Гр. Лихачев и гр. Некрасов были избраны членами профкома организации. По окончании выборных полномочий им была предоставлена прежняя работа в цехе. Через полтора года гр. Лихачева уволили с согласия выборного органа по п. 2 ст. 81 ТК РФ (сокращение штатов), а гр Некрасова - по пп. «а» п. 6 ст. 81 ТК РФ (за прогул без уважительных причин) Оба гражданина обратились в суд с иском о восстановлении на работе.
Законны ли увольнения данных работников? Назовите дополнительные гарантии при увольнении работников, избранных в состав выборных профсоюзных органов.
Назовите дополнительные гарантии при увольнении работников, избранных в состав выборных профсоюзных органов.
-
Дипломная работа:
80 страниц(ы)
ВВЕДЕНИЕ
ГЛАВА 1. РЕЧЕВОЕ ВОЗДЕЙСТВИЕ КАК ЛИНГВИСТИЧЕСКАЯ ПРОБЛЕМА
1.1. ПРИРОДА РЕЧЕВОГО ВОЗДЕЙСТВИЯ
1.2. ОСНОВНЫЕ СФЕРЫ И СРЕДСТВА РЕЧЕВОГО ВОЗДЕЙСТВИЯ1.3. ИНСТРУМЕНТЫ РЕЧЕВОГО ВОЗДЕЙСТВИЯРазвернутьСвернуть
ГЛАВА 2. ИССЛЕДОВАНИЕ ПРОБЛЕМ РЕЧЕВОГО ВОЗДЕЙСТВИЯ
2.1. РЕКЛАМНЫЙ ТЕКСТ КАК РЕЧЕВОЕ ЦЕЛЕНАПРАВЛЕННОЕ ВОЗДЕЙСТВИЕ
2.2. ПОЛИТИЧЕСКАЯ МАНИПУЛЯЦИЯ В СРЕДСТВАХ МАССОВОЙ ИНФОРМАЦИИ
2.3. КОММУНИКАТИВНЫЕ ЗАДАЧИ И СПОСОБЫ ОПРЕДЕЛЕНИЯ ИХ АДЕКВАТНОСТИ ПОТРЕБНОСТЯМ ОБЩЕСТВА
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
-
Контрольная работа:
12 страниц(ы)
Задача 1.
Гражданин Андреев на принадлежащем ему на праве пожизненного наследуемого владения земельном участке вырыл колодец для пользования питьевой водой. Односельчане-соседи обратились к Андрееву с просьбой разрешить брать воду из указанного колодца. Андреев дал согласие на пользование колодцем за плату. Граждане, не согласные с такой постановкой вопроса, обратились в суд с иском о возложении на Андреева обязанности обеспечить гражданам бесплатный свободный доступ к колодцу в связи с труднодоступностью иных источников водоснабжения.1. Имел ли гражданин Андреев право выкопать колодец на своем участке? Какими нормативными правовыми актами регулируется порядок пользования недрами гражданами?РазвернутьСвернуть
Задача
Подпорожское автотранспортное предприятие предъявило иск к Подпорожской комиссии по экологии об отмене постановления комиссии, оштрафовавшей истца на 50000руб. за загрязнение атмосферы и земли нефтепродуктами.
Ознакомившись с материалами дела, выслушав доводы сторон, суд прекратил производство по иску, так как комиссия по экологии не является юридическим лицом, а иск необходимо предъявлять областному Министерству по экологии и природопользованию. Поясните понятие, признаки юридического лица, его правоспособность, дееспособность, основания прекращения.
Обоснуйте указанное решение суда.
Тест.
Могут ли лицензирующие органы аннулировать лицензию без обращения в суд и в каких случаях:
1)Не могут;
2)Могут без обращения в суд в случае неуплаты лицензиатом в течении трех месяцев лицензионного сбора за предоставление лицензии;
3)Могут в случае неоднократного нарушения лицензиатом лицензионных требований и условий;
4)Могут если лицензиат в течении года не занимается осуществлением вида деятельности на который предоставлена лицензия;
5)Только по решению суда.