Теория вероятностей и математическая статистика - Контрольная работа №15540

«Теория вероятностей и математическая статистика» - Контрольная работа

  • 05.02.2015
  • 44
  • 5536

Содержание

Введение

Выдержка из текста работы

Заключение

Список литературы

Примечания

фото автора

Автор: fidji

Содержание

ТЕМА 1. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ 4

ТЕМА 2. ЭЛЕМЕНТЫ КОМБИНАТОРИКИ 6

ТЕМА 3. ИСЧИСЛЕНИЕ ВЕРОЯТНОСТЕЙ СОБЫТИЙ 11

ТЕМА 4. ДИСКРЕТНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ 13

ТЕМА 5. ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ ДИСКРЕТНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН 17

ТЕМА 6. НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫИ ИХ ВЕРОЯТНОСТНЫЕ ХАРАКТЕРИСТИКИ 21

ТЕМА 7. НЕКОТОРЫЕ ТИПОВЫЕ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНЫХ ВЕЛИЧИН 25

ТЕМА 8. ВЫБОРОЧНЫЙ МЕТОД. ОБЩИЕ ВОПРОСЫ 29

ТЕМА 9. ОЦЕНКА ДОЛИ ПРИЗНАКА И ГЕНЕРАЛЬНОЙ СРЕДНЕЙ 34

ТЕМА 10. ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ 40

ТЕМА 11. ЭЛЕМЕНТЫ ТЕОРИИ КОРРЕЛЯЦИИ 43


Введение

Задания по теме 1

1. Какова вероятность появления р1 «гербов» подряд при р1-кратном бросании монеты?

2. На отрезок 0A длины L числовой оси 0x наудачу ставится точка B. Найти вероятность того, что меньший из отрезков 0B и BA имеет длину, большую L/р3. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения

на числовой оси.

3. Отдел технического контроля отобрал для контроля 10р1 изделий

и после тщательного анализа их обнаружил р2 бракованных изделий. Какова относительная частота появления бракованных изделий?

4. В круг радиуса R = 10p1 помещен круг радиуса r = p2. Найти веро-ятность того, что точка, наудачу брошенная в круг радиуса R, попадет также и в круг радиуса r. Предполагается, что вероятность попадания точки

в круг пропорциональна площади круга и не зависит от его расположения.

Задания по теме 2

1. Вычислите .

2. С помощью правила симметрии вычислите:

.

3. В учебной группе студентов. Сколькими способами их можно разбить на бригады по p1 человек?

4. В рекламном агентстве имеется p1 + p2 + p3 агентов и четыре

менеджера. Сколькими способами можно составить бригаду, состоящую из трех агентов и одного менеджера?

5. Сколькими способами можно составить (p1+p2)-значное число,

в состав которого входят две двойки и три шестерки?

6. На иномарке, скрывшейся с места ДТП, был p1-значный номер,

в котором имелось три четверки, а остальные цифры не повторялись. Сколько номеров необходимо проверить по картотеке ГИБДД, чтобы найти нарушителя?

Замечание: Студенты, у которых p1  3, для данной задачи принимают значение p1 = 6.

7. Сколькими способами можно составить сувенирный набор из p1 ложек, p2 вилок и p3 ножей?

8. Составим слово из имени и фамилии студента. Сколькими способами можно переставить буквы в этом слове, чтобы получились все возможные различные наборы букв?

9. В распоряжении финансового дилера имеется p2 пакетов различных акций. Сколькими способами можно составить p3 комбинаций пакетов для проведения биржевой операции?

10. Сколькими способами можно упаковать (p1+p2+p3) различных книг в три ящика соответственно по p1, p2 и p3 книги в каждом ящике?

Задания по теме 3

1. Бросаются три игральных кубика. Определите вероятность появле-ния ровно p2 очков.

2. Среди (p1 + p2 + p3) деталей имеются четыре бракованных. Произ-вольно вынимаются пять деталей. Какова вероятность того, что среди них хотя бы одна – бракованная?

3. На экзамен вынесено (p1•p2•p3) вопросов, причем студент может

ответить на три четверти этих вопросов. Для получения тройки надо отве-тить не менее чем на три вопроса, четверки – на четыре и пятерки –

на пять. Определить вероятность получения студентом оценок 2, 3, 4 и 5.

4. На трех станках изготавливаются патроны. На первом станке

в минуту изготавливается p1 патронов, на втором – p2 и на третьем – p3. Установлено, что после одного часа работы на первом станке 2% патронов, на втором 3% и на третьем 5% – дефектные. На контроль берется 1 патрон после каждого часа работы. Определите полную вероятность того, что

он будет дефектным.

Задания по теме 4

1. Монету бросают p1 раз. Напишите распределение Бернулли для случайной величины X – числа появлений орла в процессе бросания.

2. Учебник по математике издан тиражом 100 000 экз. Вероятность бракованного экземпляра . С помощью распределения Пуассона найдите вероятность того, что в тираже будет ровно p2 бракованных книг.

3. Для закона распределения, заданного таблицей

Х 1 2 4 7 8 10

p a1 a2+0,04 a3+0,01 a1+a2 a2+a3 0,95–(2a1+3a2+2a3)

где ; ; , построить интегральную функцию рас-пределения.

4. Для закона распределения, заданного таблицей

Х 1 2 5 7 9 12

p a1 a2+0,06 a3+0,03 a1+a2 a2+a3 0,91–(2a1+3a2+2a3)

где ; ; , постройте график функции распределения.

Задания по теме 5

1. Для случайной величины, заданной таблицей

Х 1 2 5 7 9 12

p a1 a2+0,06 a3+0,03 a1+a2 a2+a3 0,91–(2a1+3a2+2a3)

где ; ; , определите математическое ожидание.

2. Для случайной величины, заданной таблицей

Х 1 2 4 8 9 12

p a1 a2+0,06 a3+0,03 a1+a2 a2+a3 0,91–(2a1+3a2+2a3)

где ; ; , определите медиану.

3. Для случайной величины, заданной таблицей

Х 1 2 5 7 9 11

p a1 a2+0,04 a3+0,03 a1+a2 a2+a3 0,93–(2a1+3a2+2a3)

где ; ; , определите дисперсию.

4. Для случайной величины, заданной таблицей

Х 1 2 5 7 9 12

p a1 a2+0,06 a3+0,03 a1+a2 a2+a3 0,91–(2a1+3a2+2a3)

где ; ; , определите среднеквадратическое откло-нение.

5. Для случайной величины, заданной таблицей

Х 1 2 5 7 9 12

p a1 a2+0,02 a3+0,03 a1+a2 a2+a3 0,95–(2a1+3a2+2a3)

где ; ; , определите модальное значение.

6. Для случайной величины, заданной таблицей

Х 1 2 4 7 8 10

p a1 a2+0,04 a3+0,01 a1+a2 a2+a3 0,95–(2a1+3a2+2a3)

где ; ; , определите начальные и центральные теоретические моменты первых трех порядков.

Задания по теме 6

1. Случайная величина X задана дифференциальной функцией в интервале . Определите математическое ожидание, дисперсию и стандарт этой величины.

2. Известно, что случайная величина X имеет нормальное распределе-ние, описываемое плотностью:

Определите дисперсию и среднеквадратическое отклонение этой слу-чайной величины.

3. Известно, что случайная величина X имеет нормальное распределе-ние, описываемое плотностью:

Определите математическое ожидание этой случайной величины.

4. Математическое ожидание и среднеквадратическое отклонение нормально распределенной величины X равны соответственно 3p1 и p2.

Запишите закон распределения и найдите вероятность того, что в результате испытания X примет значение, заключенное в интервале .

5. Постройте график функции плотности равномерного распределения случайной величины, считая, что все возможные значения этой величины заключены в интервале (min(p1,p2), max(p1,p2)).

6. Найдите функцию плотности распределения линейной функции Y=p2X + 1, если аргумент распределен нормально, причем математическое ожидание X равно 5, а среднеквадратическое отклонение равно 1.

Задания по теме 7

1. Найдите математическое ожидание показательного распределения:

2. Найдите дисперсию и среднеквадратическое отклонение показа-тельного распределения:

3. Найдите математическое ожидание и дисперсию случайной вели-чины, имеющей распределение Стьюдента с р2 степенями свободы.

4. Постройте функцию плотности вероятности «хи-квадрат» распре-деления для числа степеней свободы равному p1.

5. Постройте функцию распределения Фишера-Снедекора и функцию плотности вероятности этого распределения при условии, что числа степе-ней свободы равны соответственно p2 и p3.

6. Определите интервал, в котором практически достоверно заключены значения случайной величины, распределенной по нормальному закону, если известно, что математическое ожидание этой величины равно max(p1,p2), а среднеквадратичное отклонение равно min(p1,p2).

7. Постройте двухпараметрическую функцию распределения Вейбулла и функцию плотности вероятности этого распределения при условии, что числа степеней свободы равны соответственно 1/p2 и p3.

Задания по теме 8

1. Построить полигоны частот и относительных частот по распределе-нию выборки:

xi 2 4 7 8 9 12

ni

2p2 p2

p3 3p3

2. Постройте гистограммы частот и относительных частот по распреде-лению выборки:

интервала Интервал,

Сумма частот

вариант интервала,

ni

1 3 – 5 p1

2 5 – 7 2p2

3 7 – 9 3p3

4 9 – 11

5 11 – 13

6 13 – 15

7 15 – 17 p1+p2

3. Для генеральной совокупности, заданной распределением:

xi 5 10 15 20 25 30 35

Ni p1 3p1 p2 2p2

2p3

Найдите генеральную среднюю, генеральную дисперсию, генеральное стандартное отклонение, моду, медиану и размах.

4. Из генеральной совокупности сделана выборка, заданная распреде-лением:

xi 2 4 6 8 10 12 14

ni p2 2p2 p1

p3 2p3 p2+p3

Найти выборочную среднюю выборочные дисперсию и стандартное отклонение.

Задания по теме 9

1. Из генеральной совокупности сделана выборка, заданная распреде-лением:

xi 2 4 6 8 10 12 14

ni p2 2p2 p1

p3 2p3 p2+p3

Найдите несмещенные дисперсию и стандартное отклонение.

2. По данным p2 измерений некоторой величины найдены средняя

результатов измерений, равная 30 и выборочная дисперсия, равная 36. Найдите границы, в которых с надежностью 0,99 заключено истинное зна-чение измеряемой величины.

3. Производятся независимые испытания с одинаковой, но неизвест-ной вероятностью p появления события А в каждом испытании. Найдите доверительный интервал для оценки p с надежностью, равной 0,95, если

в 5p1 испытаниях событие А появится p2 раз.

4. Из партии объемом 100p1 однородных товаров для проверки

по схеме случайной бесповторной выборки отобрано 10p3 товаров, среди которых оказалось 8p3 небракованных. Найдите вероятность того, что доля бракованных товаров во всей партии отличается от полученной доли

в выборке не более чем на 0,02 (по абсолютной величине), а также границы, в которых с надежностью 0,96 заключена доля бракованных товаров

во всей партии.

5. Из 1000p3 вкладчиков банка по схеме случайной бесповторной

выборки было отобрано 50p1 вкладчиков. Средний размер вклада в выборке составил 100p2 руб., а среднеквадратическое отклонение 30p2 руб. Какова вероятность того, что средний размер вклада случайно выбранного вкладчика отличается от его среднего размера в выборке не более чем на 5p2 руб.

(по абсолютной величине)?

Задания по теме 10

1. Имеются две независимые выборки с объемами n=10p1 и m=20p2, которые извлечены из нормально распределенных генеральных совокуп-ностей. Для этих выборок найдены выборочные средние x=40p2 и y=50p3. Кроме этого, известны генеральные дисперсии D(X)=8,5p3 и D(Y)=7,5p2. При уровне значимости α=0,01 проверьте нулевую гипотезу

H0: M(X)=M(Y), если альтернативная гипотеза H1: M(X)

2. Из генеральных совокупностей X и Y, распределенных по нормаль-ному закону, извлечены малые выборки с объемами соответственно n = p1 и m = p3, выборочными средними x = p2/2 и y = p3/3 и исправленными

дисперсиями sX2 = p1/50, sY2 = p3/80. При уровне значимости α = 0,05

проверьте нулевую гипотезу H0: M(X)=M(Y), если альтернативная гипотеза H1: M(X) M(Y).

3. Произведено 100p1 независимых испытаний, в которых событие A появлялось с относительно частотой равной 0,06. При уровне значимости

α = 0,05 проверьте нулевую гипотезу H0: P(A) = p= p0 = p3/500, если аль-тернативная гипотеза H1: p p0. Считается, что по теореме Лапласа относи-тельная частота распределена по закону, близкому к нормальному.

Задания по теме 11

1. Найдите коэффициент корреляции и определите тесноту связи двух вариантов, заданных таблицей:

xi 0,1p1 0,3p2 0,5p3 p1 p3

yi p3 p2 2p1 3p3 4p2

2. Определите выборочное уравнение прямой линии регрессии Y на X и постройте его график по данным наблюдений, представленных в следую-щей таблице.

xi p1 2p2 3p3 4p1 5p2

yi 3p3 2p1 p2 p1 p3

3. Из опыта известно, что значению p1 величины Y соответствуют 4 значе-ния p2 величины X, 3 значениям 2p3 величины X соответствует

значение p3 величины Y, значению 3p1 величины X не соответствует ни одно значение величины Y, значению 5p2 величины Y не соответствует ни одно значение величины X, 14 значениям 7p3 величины X соответствует

значение 4p1 величины Y, 11 значениям 6p3 величины Y соответствует

значение 5p2 величины X. По этим данным постройте корреляционную таблицу.


Выдержка из текста работы

Тема 1. Основные понятия и определения

Место случайности в природе и в практической деятельности людей. Интуитивное понятие вероятности события.

Классификация событий. Классическое определение вероятности

события, его недостатки. Статистическое определение вероятности. Геометрические вероятности. Теорема Я. Бернулли о сходимости по вероятности.

Тема 2. Элементы комбинаторики

Основные понятия комбинаторики. Правила произведения и суммы. Виды комбинаций элементов конечных множеств: размещения, перестановки, сочетания и их свойства.

Тема 3. Исчисление вероятностей событий

Основные понятия и соотношения алгебры событий. Теорема сложения для несовместных событий. Понятие зависимости событий и условная вероятность. Теорема умножения. Теорема сложения в общем виде.

Формула полной вероятности. Формула Бейеса.

Тема 4. Дискретные случайные величины

Понятие случайной величины. Дискретная случайная величина и закон ее распределения. Функция распределения дискретной случайной величины. График функции распределения дискретной случайной величины.

Схема повторения испытаний с бинарным исходом и биномиальное распределение. Формула Я. Бернулли. Наивероятнейшее число наступления события.

Распределение Пуассона. Простейший поток событий.

Геометрическое распределение.

Тема 5. Числовые характеристики дискретных случайных величин

О введении числовых характеристик случайных величин. Характеристики положения (математическое ожидание, медиана, мода) и характеристики рассеяния (дисперсия, среднеквадратическое отклонение, вероятное отклонение).

Числовые характеристики случайных величин, имеющих биномиальное и геометрическое распределение.

Числовые характеристики суммы и произведения дискретных случайных величин.

Понятие о начальных и центральных моментах случайных величин.

Функции дискретного случайного аргумента и их характеристики.

Тема 6. Непрерывные случайные величины

и их вероятностные характеристики

Непрерывные случайные величины. Функция и плотность распределения. Кривая распределения. Распределение случайной величины по закону постоянной плотности (равномерное распределение).

Числовые характеристики непрерывной случайной величины.

Функции непрерывного случайного аргумента и их характеристики.

Тема 7. Некоторые типовые распределения случайных величин

Потоки событий. Распределение Пуассона и определяемый и простейший поток. Основные параметры и характеристики пуассоновского распределения. Распределение Пуассона как предельный случай биномиального. Общность пуассоновского распределения. Экспоненциальное распределение и его характеристики.

Локальная и интегральная теоремы Лапласа. Нормальное распределе-ние и центральная предельная теорема. Нормальная кривая, ее уравнение. Функция нормального распределения и интеграл вероятности. Вероятность попадания нормально распределенной случайной величины на заданный интервал. Правило трех сигм.

Распределения Пирсона, Стьюдента, Фишера и Вейбулла.

Тема 8. Выборочный метод. Общие вопросы

Выборочный метод, генеральная и выборочная совокупности, повтор-ная и бесповторная выборки, репрезентативная выборка, способы отбора, эмпирическая функция распределения. Сплошное и выборочное наблюде-ния. Основные задачи теории выборки. Понятие выборочной оценки неиз-вестного параметра генерального распределения. Требования, предъявляе-мые к статистической оценке.

Вариационный ряд как результат первичной обработки результатов опыта (наблюдений). Дискретный и интегральный ряды. Средняя арифме-тическая и дисперсия, стандартное отклонение, мода, медиана, размах

вариационного ряда. Графическое представление статистических данных.

Тема 9. Оценка доли признака и генеральной средней

Несмещенность и состоятельность выборочной доли как оценки гене-ральной доли. Формула для расчета доверительной вероятности. Средняя квадратическая ошибка собственно случайной выборки при оценке доли при-знака при повторном и безповторном отборе членов. Выборочная средняя как оценка генеральной средней. Несмещенность и состоятельность этой оценки. Формула для расчета доверительной вероятности. Средняя квадратическая ошибка собственно случайной выборки при оценке средней при повторном

и бесповторном отборе членов.

Тема 10. Проверка статистических гипотез

Понятие статистической гипотезы. Основные этапы проверки гипотезы. Проверка гипотез о числовых значениях параметров нормального распределения. Проверка гипотез о равенстве математических ожиданий двух нормальных распределений с известными дисперсиями, а также с неизвестными,

но равными дисперсиями. Проверка гипотезы о равенстве дисперсий двух нормальных распределений. Проверка гипотезы о числовом значении вероятности события. Проверка гипотезы о равенстве вероятностей. Проверка гипотезы о модели закона распределения. Критерий согласия Пирсона.

Тема 11. Элементы теории корреляции

Функциональная и статистическая зависимости. Корреляционные

таблицы. Групповые средние. Понятие корреляционной зависимости.

Основные задачи теории корреляции: выбор связи, оценка тесноты и существенности связи. Виды корреляционной связи: парная и множественная, линейная и нелинейная связи. Линейная корреляция. Уравнения прямых регрессии для парной корреляции. Определение параметров прямых регрессии методом наименьших квадратов. Коэффициент корреляции и его свойства. Оценка достоверности (значимости) выборочного коэффициента корреляции. Критерий Стъюдента. Понятие о множественной корреляционной зависимости.


Заключение

Задания по теме 1

1. Какова вероятность появления р1 «гербов» подряд при р1-кратном бросании монеты?

2. На отрезок 0A длины L числовой оси 0x наудачу ставится точка B. Найти вероятность того, что меньший из отрезков 0B и BA имеет длину, большую L/р3. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения

на числовой оси.

3. Отдел технического контроля отобрал для контроля 10р1 изделий

и после тщательного анализа их обнаружил р2 бракованных изделий. Какова относительная частота появления бракованных изделий?

4. В круг радиуса R = 10p1 помещен круг радиуса r = p2. Найти веро-ятность того, что точка, наудачу брошенная в круг радиуса R, попадет также и в круг радиуса r. Предполагается, что вероятность попадания точки

в круг пропорциональна площади круга и не зависит от его расположения.

Задания по теме 2

1. Вычислите .

2. С помощью правила симметрии вычислите:

.

3. В учебной группе студентов. Сколькими способами их можно разбить на бригады по p1 человек?

4. В рекламном агентстве имеется p1 + p2 + p3 агентов и четыре

менеджера. Сколькими способами можно составить бригаду, состоящую из трех агентов и одного менеджера?

5. Сколькими способами можно составить (p1+p2)-значное число,

в состав которого входят две двойки и три шестерки?

6. На иномарке, скрывшейся с места ДТП, был p1-значный номер,

в котором имелось три четверки, а остальные цифры не повторялись. Сколько номеров необходимо проверить по картотеке ГИБДД, чтобы найти нарушителя?

Замечание: Студенты, у которых p1  3, для данной задачи принимают значение p1 = 6.

7. Сколькими способами можно составить сувенирный набор из p1 ложек, p2 вилок и p3 ножей?

8. Составим слово из имени и фамилии студента. Сколькими способами можно переставить буквы в этом слове, чтобы получились все возможные различные наборы букв?

9. В распоряжении финансового дилера имеется p2 пакетов различных акций. Сколькими способами можно составить p3 комбинаций пакетов для проведения биржевой операции?

10. Сколькими способами можно упаковать (p1+p2+p3) различных книг в три ящика соответственно по p1, p2 и p3 книги в каждом ящике?

Задания по теме 3

1. Бросаются три игральных кубика. Определите вероятность появле-ния ровно p2 очков.

2. Среди (p1 + p2 + p3) деталей имеются четыре бракованных. Произ-вольно вынимаются пять деталей. Какова вероятность того, что среди них хотя бы одна – бракованная?

3. На экзамен вынесено (p1•p2•p3) вопросов, причем студент может

ответить на три четверти этих вопросов. Для получения тройки надо отве-тить не менее чем на три вопроса, четверки – на четыре и пятерки –

на пять. Определить вероятность получения студентом оценок 2, 3, 4 и 5.

4. На трех станках изготавливаются патроны. На первом станке

в минуту изготавливается p1 патронов, на втором – p2 и на третьем – p3. Установлено, что после одного часа работы на первом станке 2% патронов, на втором 3% и на третьем 5% – дефектные. На контроль берется 1 патрон после каждого часа работы. Определите полную вероятность того, что

он будет дефектным.

Задания по теме 4

1. Монету бросают p1 раз. Напишите распределение Бернулли для случайной величины X – числа появлений орла в процессе бросания.

2. Учебник по математике издан тиражом 100 000 экз. Вероятность бракованного экземпляра . С помощью распределения Пуассона найдите вероятность того, что в тираже будет ровно p2 бракованных книг.

3. Для закона распределения, заданного таблицей

Х 1 2 4 7 8 10

p a1 a2+0,04 a3+0,01 a1+a2 a2+a3 0,95–(2a1+3a2+2a3)

где ; ; , построить интегральную функцию рас-пределения.

4. Для закона распределения, заданного таблицей

Х 1 2 5 7 9 12

p a1 a2+0,06 a3+0,03 a1+a2 a2+a3 0,91–(2a1+3a2+2a3)

где ; ; , постройте график функции распределения.

Задания по теме 5

1. Для случайной величины, заданной таблицей

Х 1 2 5 7 9 12

p a1 a2+0,06 a3+0,03 a1+a2 a2+a3 0,91–(2a1+3a2+2a3)

где ; ; , определите математическое ожидание.

2. Для случайной величины, заданной таблицей

Х 1 2 4 8 9 12

p a1 a2+0,06 a3+0,03 a1+a2 a2+a3 0,91–(2a1+3a2+2a3)

где ; ; , определите медиану.

3. Для случайной величины, заданной таблицей

Х 1 2 5 7 9 11

p a1 a2+0,04 a3+0,03 a1+a2 a2+a3 0,93–(2a1+3a2+2a3)

где ; ; , определите дисперсию.

4. Для случайной величины, заданной таблицей

Х 1 2 5 7 9 12

p a1 a2+0,06 a3+0,03 a1+a2 a2+a3 0,91–(2a1+3a2+2a3)

где ; ; , определите среднеквадратическое откло-нение.

5. Для случайной величины, заданной таблицей

Х 1 2 5 7 9 12

p a1 a2+0,02 a3+0,03 a1+a2 a2+a3 0,95–(2a1+3a2+2a3)

где ; ; , определите модальное значение.

6. Для случайной величины, заданной таблицей

Х 1 2 4 7 8 10

p a1 a2+0,04 a3+0,01 a1+a2 a2+a3 0,95–(2a1+3a2+2a3)

где ; ; , определите начальные и центральные теоретические моменты первых трех порядков.

Задания по теме 6

1. Случайная величина X задана дифференциальной функцией в интервале . Определите математическое ожидание, дисперсию и стандарт этой величины.

2. Известно, что случайная величина X имеет нормальное распределе-ние, описываемое плотностью:

Определите дисперсию и среднеквадратическое отклонение этой слу-чайной величины.

3. Известно, что случайная величина X имеет нормальное распределе-ние, описываемое плотностью:

Определите математическое ожидание этой случайной величины.

4. Математическое ожидание и среднеквадратическое отклонение нормально распределенной величины X равны соответственно 3p1 и p2.

Запишите закон распределения и найдите вероятность того, что в результате испытания X примет значение, заключенное в интервале .

5. Постройте график функции плотности равномерного распределения случайной величины, считая, что все возможные значения этой величины заключены в интервале (min(p1,p2), max(p1,p2)).

6. Найдите функцию плотности распределения линейной функции Y=p2X + 1, если аргумент распределен нормально, причем математическое ожидание X равно 5, а среднеквадратическое отклонение равно 1.

Задания по теме 7

1. Найдите математическое ожидание показательного распределения:

2. Найдите дисперсию и среднеквадратическое отклонение показа-тельного распределения:

3. Найдите математическое ожидание и дисперсию случайной вели-чины, имеющей распределение Стьюдента с р2 степенями свободы.

4. Постройте функцию плотности вероятности «хи-квадрат» распре-деления для числа степеней свободы равному p1.

5. Постройте функцию распределения Фишера-Снедекора и функцию плотности вероятности этого распределения при условии, что числа степе-ней свободы равны соответственно p2 и p3.

6. Определите интервал, в котором практически достоверно заключены значения случайной величины, распределенной по нормальному закону, если известно, что математическое ожидание этой величины равно max(p1,p2), а среднеквадратичное отклонение равно min(p1,p2).

7. Постройте двухпараметрическую функцию распределения Вейбулла и функцию плотности вероятности этого распределения при условии, что числа степеней свободы равны соответственно 1/p2 и p3.

Задания по теме 8

1. Построить полигоны частот и относительных частот по распределе-нию выборки:

xi 2 4 7 8 9 12

ni

2p2 p2

p3 3p3

2. Постройте гистограммы частот и относительных частот по распреде-лению выборки:

интервала Интервал,

Сумма частот

вариант интервала,

ni

1 3 – 5 p1

2 5 – 7 2p2

3 7 – 9 3p3

4 9 – 11

5 11 – 13

6 13 – 15

7 15 – 17 p1+p2

3. Для генеральной совокупности, заданной распределением:

xi 5 10 15 20 25 30 35

Ni p1 3p1 p2 2p2

2p3

Найдите генеральную среднюю, генеральную дисперсию, генеральное стандартное отклонение, моду, медиану и размах.

4. Из генеральной совокупности сделана выборка, заданная распреде-лением:

xi 2 4 6 8 10 12 14

ni p2 2p2 p1

p3 2p3 p2+p3

Найти выборочную среднюю выборочные дисперсию и стандартное отклонение.

Задания по теме 9

1. Из генеральной совокупности сделана выборка, заданная распреде-лением:

xi 2 4 6 8 10 12 14

ni p2 2p2 p1

p3 2p3 p2+p3

Найдите несмещенные дисперсию и стандартное отклонение.

2. По данным p2 измерений некоторой величины найдены средняя

результатов измерений, равная 30 и выборочная дисперсия, равная 36. Найдите границы, в которых с надежностью 0,99 заключено истинное зна-чение измеряемой величины.

3. Производятся независимые испытания с одинаковой, но неизвест-ной вероятностью p появления события А в каждом испытании. Найдите доверительный интервал для оценки p с надежностью, равной 0,95, если

в 5p1 испытаниях событие А появится p2 раз.

4. Из партии объемом 100p1 однородных товаров для проверки

по схеме случайной бесповторной выборки отобрано 10p3 товаров, среди которых оказалось 8p3 небракованных. Найдите вероятность того, что доля бракованных товаров во всей партии отличается от полученной доли

в выборке не более чем на 0,02 (по абсолютной величине), а также границы, в которых с надежностью 0,96 заключена доля бракованных товаров

во всей партии.

5. Из 1000p3 вкладчиков банка по схеме случайной бесповторной

выборки было отобрано 50p1 вкладчиков. Средний размер вклада в выборке составил 100p2 руб., а среднеквадратическое отклонение 30p2 руб. Какова вероятность того, что средний размер вклада случайно выбранного вкладчика отличается от его среднего размера в выборке не более чем на 5p2 руб.

(по абсолютной величине)?

Задания по теме 10

1. Имеются две независимые выборки с объемами n=10p1 и m=20p2, которые извлечены из нормально распределенных генеральных совокуп-ностей. Для этих выборок найдены выборочные средние x=40p2 и y=50p3. Кроме этого, известны генеральные дисперсии D(X)=8,5p3 и D(Y)=7,5p2. При уровне значимости α=0,01 проверьте нулевую гипотезу

H0: M(X)=M(Y), если альтернативная гипотеза H1: M(X)

2. Из генеральных совокупностей X и Y, распределенных по нормаль-ному закону, извлечены малые выборки с объемами соответственно n = p1 и m = p3, выборочными средними x = p2/2 и y = p3/3 и исправленными

дисперсиями sX2 = p1/50, sY2 = p3/80. При уровне значимости α = 0,05

проверьте нулевую гипотезу H0: M(X)=M(Y), если альтернативная гипотеза H1: M(X) M(Y).

3. Произведено 100p1 независимых испытаний, в которых событие A появлялось с относительно частотой равной 0,06. При уровне значимости

α = 0,05 проверьте нулевую гипотезу H0: P(A) = p= p0 = p3/500, если аль-тернативная гипотеза H1: p p0. Считается, что по теореме Лапласа относи-тельная частота распределена по закону, близкому к нормальному.

Задания по теме 11

1. Найдите коэффициент корреляции и определите тесноту связи двух вариантов, заданных таблицей:

xi 0,1p1 0,3p2 0,5p3 p1 p3

yi p3 p2 2p1 3p3 4p2

2. Определите выборочное уравнение прямой линии регрессии Y на X и постройте его график по данным наблюдений, представленных в следую-щей таблице.

xi p1 2p2 3p3 4p1 5p2

yi 3p3 2p1 p2 p1 p3

3. Из опыта известно, что значению p1 величины Y соответствуют 4 значе-ния p2 величины X, 3 значениям 2p3 величины X соответствует

значение p3 величины Y, значению 3p1 величины X не соответствует ни одно значение величины Y, значению 5p2 величины Y не соответствует ни одно значение величины X, 14 значениям 7p3 величины X соответствует

значение 4p1 величины Y, 11 значениям 6p3 величины Y соответствует

значение 5p2 величины X. По этим данным постройте корреляционную таблицу.


Список литературы

Основная

1. Бочаров П.П., Печинкин А.В. Теория вероятностей. Математическая статистика. – М.: Гардарика, 1998.

2. Гмурман В.Е. Теория вероятностей и математическая статистика. – М.: Высш. шк., 2003.

3. Гмурман В.Е. Руководство к решению задач по теории вероятностей и мате-матической статистике. – М.: Высш. шк., 2003.

4. Коломаев В.А., Камкин В.Н. Теория вероятностей и математическая статистика. – М.: ЮНИТИ, 2003.

5. Кремер Н.Ш. Теория вероятностей и математическая статистика. – М.: ЮНИТИ, 2002.

Дополнительная

6. Вентцель Е.С. Теория вероятностей. – М.: АСАДЕМА, 2003.

7. Вентцель Е.С., Овчаров Л.А. Задачи и упражнения по теории вероятностей. – М.: АСАДЕМА, 2003.

8. Гнеденко Б.В. Курс теории вероятностей: Учебник для университета. – М.: УРСС, 2001.

9. Гнеденко Б.В., Хинчин А.Я. Элементарное введение в теорию вероятностей. – М.: УРСС, 2003.

10. Кочетков Е.С., Смерчинская С.О. Теория вероятностей и математическая статистика: Учебник. – М.: Форум: Инфра-М, 2003.


Примечания

МАТЕМАТИКА ДЛЯ ЭКОНОМИСТОВ

Часть 3 (Теория вероятностей и математическая статистика)

МИЭЛ


Тема: «Теория вероятностей и математическая статистика»
Раздел: Математика
Тип: Контрольная работа
Страниц: 44
Стоимость
текста
работы:
1500 руб.
Нужна похожая работа?
Закажите авторскую работу по вашему заданию.
  • Цены ниже рыночных
  • Необходимый уровень антиплагиата
  • Прямое общение с исполнителем вашей работы
  • Бесплатные доработки и консультации
  • Минимальные сроки выполнения
  • Пишем сами, без нейросетей

Мы уже помогли 24535 студентам

Средний балл наших работ

  • 4.89 из 5
Узнайте стоимость
написания вашей работы
Похожие материалы
  • Дипломная работа:

    Методика обучения теории вероятностей и математической статистике в школьном курсе математики

    116 страниц(ы) 

    Введение….….4
    Глава I Основы вероятностно-статистической линии
    §1. Исторический обзор….….….…7
    §2. Вероятностно-статистическая линия в школьном курсе математики.
    2.1. Предпосылки включения вероятностно-статистической линии в школьный курс математики….9
    2.2. Место и значение вероятностно-статистической линии в школьном курсе математики…11
    2.3. Вероятностно-статистическая линия в учебниках «Математика 5-6» под ред. Г.В.Дорофеева и И.Ф.Шарыгина и «Математика 7-9» под ред. Г.В.Дорофеева…13
    Глава II Элементы теории вероятностей и математической статистики
    §1. Анализ данных.
    1.1. Способы систематизации и представления данных….…14
    1.2. Графическое представление данных….….…16
    §2. Вероятность и частота
    2.1. Вероятность как ожидаемая частота…20
    §3. Элементы теории вероятностей
    3.1. Вероятность случайного события….…26
    3.2. Вероятности независимость событий….…34
    3.3. Случайные величины….…38
    §4. Статистика – дизайн информации.
    4.1. Первичная обработка данных….….43
    4.2.Графическое изображение статистических данных…48
    4.3. Выборочные материалы….…55
    Глава III. Дополнительные занятия по теории вероятностей и математической статистике
    §1. Факультатив по теме «Теория вероятностей и математическая статистика».….60
    Заключение….…106
    Литература….….107
  • Дипломная работа:

    Разработка электронного ресурса по дисциплине “теория вероятности и математическая статистика”

    35 страниц(ы) 

    ВВЕДЕНИЕ 3
    Глава 1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ДЛЯ РАЗРАБОТКИ ЭЛЕКТРОННОГО РЕСУРСА ПО ДИСЦИПЛИНЕ “ТЕОРИЯ ВЕРОЯТНОСТИ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА” 5
    1.1 Описание разработки электронных ресурсов по дисциплине “Теория вероятности и задачи математическая акмуллы статистика” и их виды 5
    объекта Вывод по 1 15
    минимальные Глава 2. передавать РАЗРАБОТКА ИНФОРМАЦИОННОЙ электронные СИСТЕМЫ может ЭЛЕКТРОННОЕ ПОСОБИЕ 17
    2.1. любые Техническое партнеров задание 17
    2.2. процессе Статистические и динамические диаграммы 31
    2.2 Динамические диаграммы 32
    Вывод по главе 2 33
    ЗАКЛЮЧЕНИЕ 34
  • Дипломная работа:

    Математика для специальности «генетика»

    131 страниц(ы) 

    Введение…4
    ЧАСТЬ I
    Элементы теории вероятностей и математической статистики Глава 1. Событие и вероятность….5
    § 1.1. Основные понятия. Определение вероятности….…5
    § 1.2. Свойства вероятности….10
    § 1.3. Приложение в генетике…14
    Глава 2. Дискретные и непрерывные случайные величины ….15
    § 2.1. Случайные величины…15
    § 2.2. Математическое ожидание дискретной случайной величины…16
    § 2.3. Закон больших чисел…24
    Глава 3. Элементы математической статистики….25
    § 3.1. Элементы математической статистики ….25
    § 3.2. Оценки параметра генеральной совокупности….30
    § 3.3. Доверительные интервалы для параметров нормального распределения….32
    § 3.4. Проверка статистических гипотез…38
    § 3.5. Линейная корреляция….39
    Глава 4. Статистическая проверка статистических гипотез….41
    § 4.1. Основные сведения…41
    § 4.2. Сравнение двух средних нормальных генеральных совокупностей, дисперсии которых известны….44
    § 4.3. Сравнение двух средних произвольно распределенных генеральных совокупностей….….46
    § 4.4. Другие характеристики вариационного ряда….47
    Глава 5. Методы расчета свободных характеристик выборки….51
    § 5.1. Метод произведений вычисления выборочной средней и дисперсии….51
    § 5.2. Метод сумм вычисления выборочной средней и дисперсии….52
    ЧАСТЬ II
    МАТЕМАТИЧЕСКИЙ АНАЛИЗ
    Глава 6. Дифференциальное и интегральное исчисление функций нескольких переменных…53
    § 6.1. Функции нескольких переменных….53
    § 6.2. Частные производные. Полный дифференциал …55
    § 6.3. Экстремумы функций двух переменных ….58
    § 6.4. Двойные интегралы….59
    § 6.5. Тройные интегралы….65
    Глава 7. Комплексные числа….67
    § 7.1. Определение комплексных чисел и основные операции над ними.…. ….….67
    § 7.2. Обзор элементарных функций….…74
    Глава 8 Дифференциальные уравнения….78
    § 8.1. Дифференциальные уравнения первого порядка….78
    § 8.2. Уравнения высших порядков….…86
    § 8.3. Линейные уравнения высших порядков….88
  • Дипломная работа:

    Проектирование электронного учебно-методического комплекса по дисциплине «теория вероятностей и математическая статистика

    61 страниц(ы) 

    Введение 3
    Глава 1. Теоретические основы создания электронного учебно-методического комплекса
    1.1 Сущность электронного учебно-методического комплекса 6
    1.2. Этапы проектирования электронного учебно-методического комплекса 7
    1.3 Основные типы технологий, применяемых в учебных заведениях нового типа 10
    Вывод по первой главе 19
    Глава 2. Проектирование и разработка электронного учебно-методического комплекса по курсу «Теории вероятностей и математической статистики»
    2.1. Структура электронного учебно-методического комплекса 21
    2.2. Алгоритм формирования структуры 21
    2.3. Техническое задание 22
    2.4. Описание программы 26
    Вывод по второй главе 35
    Заключение 36
    Список литературы 37
    Приложения 39
  • Контрольная работа:

    Высшая математике (УФИМСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ ЭКОНОМИКИ И СЕРВИСА)

    51 страниц(ы) 

    Элементы векторной алгебры и аналитической геометрии
    Элементы линейной алгебры
    Введение в математический анализ
    Производная и её приложения
    Приложения дифференциального исчисления
    Дифференциальное исчисление функций нескольких переменных
    Неопределённый и определённый интегралы
    Теория вероятностей и математическая статистика
  • Дипломная работа:

    Дистанционное изучение курса теории вероятности и математической статистики

    85 страниц(ы) 

    Введение…3
    Глава 1 Теоретические основы процесса дистанционного образования….8
    1.1 Понятие "дистанционное обучение"….9
    1.2 Дистанционное обучение в ВУЗе: модели и технологии…12
    1.3 Методы дистанционного университетского образования….20
    1.4 Дистанционное образование в России….27
    Вывод по главе….29
    Глава 2. Как создаются HTML страниц и электронные учебники….32
    2.1 Электронный учебник как средство дистанционного обучения…32
    2.2 Теория создания Web-сайт….37
    2.3 Основные принципы работы с Macromedia Dreamweaver MX….…55
    Вывод по главе 2….80
    Заключение….82
    Список использованной литературы….84
Другие работы автора
  • Дипломная работа:

    Основные направления повышения финансовой устойчивости предприятия ООО

    142 страниц(ы) 

    ВВЕДЕНИЕ 7
    1 ТЕОРЕТИЧЕСКИЕ ОСНОВЫ АНАЛИЗА ФИНАНСОВОГО СОСТОЯНИЯ ПРЕДПРИЯТИЯ 9
    1.1. Необходимость диагностики финансовой деятельности предприятия 9
    1.2. Методы и методика анализа финансового состояния предприятия 12
    1.3. Анализ показателей финансового состояния предприятия 27
    1.4. Подходы к совершенствованию финансового оздоровления в условиях финансового кризиса 47
    2 АНАЛИЗ ФИНАНСОВОЙ УСТОЙЧИВОСТИ ПРЕДПРИЯТИЯ ООО «БАШМОРОЗПРОДУКТ» 56
    2.1. Краткая характеристика деятельности предприятия 56
    2.2. Анализ финансового состояния предприятия 58
    2.3. Анализ платежеспособности и финансовой устойчивости 64
    2.4. Анализ финансовых результатов деятельности предприятия и оценка потенциального банкротства 71
    3 ОСНОВНЫЕ НАПРАВЛЕНИЯ ПОВЫШЕНИЯ ФИНАНСОВОЙ УСТОЙЧИВОСТИ ПРЕДПРИЯТИЯ ООО «БАШМОРОЗПРОДУКТ» 81
    3.1. Финансовая стратегия и модель восстановления платежеспособности предприятия 81
    3.2. Оптимизация структуры активов и пассивов с применением ЭММ 90
    3.3. Расчет экономической эффективности реализации финансовой
    стратегии 103
    ЗАКЛЮЧЕНИЕ 113
    СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 118
    ПРИЛОЖЕНИЕ А 120
    ПРИЛОЖЕНИЕ Б 122
    ПРИЛОЖЕНИЕ В 123
    ПРИЛОЖЕНИЕ Г 124
    ПРИЛОЖЕНИЕ Д 131
    ПРИЛОЖЕНИЕ Е 135
    ПРИЛОЖЕНИЕ Ж 141
  • Дипломная работа:

    Методы диагностики и педагогической поддержки в работе с одарёнными детьми младшего школьного возраста

    82 страниц(ы) 

    Введение 3
    Глава 1. Феномен одаренности, ее психологические проявления 6
    1.1. Становление и развитие понятия «одаренность», в психологической науке 6
    1.2. Оособенности одаренных детей 10
    Глава 2. Психолого-педагогическое сопровождение одарённых детей младшего школьного возраста в учебно-воспитательном процессе 19
    2.1. Методы диагностики одаренности в начальной школе 19
    2.2. Проблемы выявления одаренных детей младшего школьного возраста 28
    2.3. Стратегии обучения одаренных детей младшего школьного возраста 34
    Заключение 52
    Список использованной литературы 54
    Приложение 57
    Методики для диагностики детской одаренности: 57
    Спортивный талант 57
    Технические способности 58
    Литературное дарование 58
    Музыкальный талант 58
    Художественные способности вашего ребенка могут проявиться 59
    Способности к научной работе 59
    Артистический талант 60
    Незаурядный интеллект 60
    Прогрессивные матрицы Равена 68
  • Дипломная работа:

    Разработка проекта автоматизации проектирование автоматизированной информационной системы учета на предприятии «окна-плюс»

    92 страниц(ы) 

    Введение 3
    Глава 1. Предпроектное обследование предприятия «Окна-плюс» 7
    1.1.Описание деятельности предприятия «Окна-плюс» 7
    1.2. Обзор существующих решений для автоматизации складского учета 22
    1.3. Моделирование бизнес-процессов в организации и постановка задачи автоматизации 27
    Выводы по Главе 1 38
    Глава 2. Внедрение системы автоматизации деятельности фирмы по производству и продаже пластиковых окон 39
    2.1. Формирование требований к автоматизированной информационной системе 39
    2.2. Разработка прототипа автоматизированной информационной системы 48
    2.3. Расчет затрат на внедрение проекта 65
    2.4. Оценка экономической эффективности проекта 75
    Выводы по Главе 2 83
    Заключение 84
    Список использованной литературы 86
    Приложение 89
  • Дипломная работа:

    Анализ «Автоматизированной системы медицинского осмотра» Поликлиники № 1 МСЧ ОАО ММК. Разработка приложения «Медицинский осмотр» с использованием технологии Oracle

    181 страниц(ы) 

    Введение 3
    Глава 1. Анализ медицинских информационных систем 9
    1.1. Обзор существующих медицинских информационных систем 9
    1.2. Анализ нормативных документов по проведению медицинских осмотров 30
    1.3. Анализ «Автоматизированной системы Медицинского осмотра» Поликлиники № 1 МСЧ ОАО ММК и построение функциональной модели и концептуальной модели «как есть» 37
    Выводы по главе 1 44
    Глава 2. Проектирование информационной системы и реализация приложения «Медицинский осмотр» 45
    2.1. Выбор средств разработки информационной системы «Медицинский осмотр» 45
    2.2. Проектирование ИС «Медицинский осмотр» с использованием средств Designer6i 64
    2.3. Архитектуры СУБД 74
    2.4. Реализация серверной части «Медосмотр» с использованием Case-средства Oracle Designer 6i и СУБД Oracle9i Standard Edition 84
    2.5. Реализация клиентской части «Медосмотр» с использованием Borland Delphi 6 95
    Выводы по главе 2 105
    Глава 3. Педагогические основы обучения персонала работе с приложением «Медицинский осмотр» 107
    3.1 Психолого-педагогические особенности обучения взрослых 107
    3.2. Содержательно – процессуальные особенности обучения персонала поликлиники работе с приложением «Медицинский осмотр» 127
    3.3. Технология организации экспериментальной работы, анализ и оценка результатов 144
    Выводы по главе 3 171
    Заключение 172
    Литература 174
    Приложения
  • Контрольная работа:

    Контрольная работа по программированию на Паскале #1

    8 страниц(ы) 

    ЗАДАНИЕ №1 3
    6. Определить, является ли заданная целая квадратная матрица порядка n симметричной (относительно главной диагонали). 3
    16. Дано действительное число х. Получить квадратную матрицу порядка n+1: 4
    ЗАДАНИЕ №2. 5
    24. Дана символьная строка. Преобразовать ее, заменив запятыми (,) все двоеточия (:), встречающиеся среди первых n/2 символов, и заменив точками (.) все восклицательные знаки (!), встречающиеся среди остальных символов. 5
    26. В записке слова зашифрованы — каждое из них записано наоборот. Расшифровать сообщение. 6
    ЗАДАНИЕ №3. 7
    1. Дан файл, содержащий текст, записанный строчными русскими буквами. Получить в другом файле тот же текст, записанный заглавными буквами. 7
    6. Дан файл, содержащий текст на русском языке. Определить, сколько раз встречается в нем самое длинное слово. 8
  • Дипломная работа:

    Эффективное управление современным предприятием

    130 страниц(ы) 

    ВВЕДЕНИЕ 3
    1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ УПРАВЛЕНИЯ СОВРЕМЕННЫМ ПРЕДПРИЯТИЕМ 7
    1.1. СИСТЕМА УПРАВЛЕНИЯ ОРГАНИЗАЦИЕЙ 7
    1.2. ЛИНИИ УЛУЧШЕНИЯ МЕХАНИЗМА УПРАВЛЕНИЯ НА ПРЕДПРИЯТИИ 15
    1.3. ПРОБЛЕМЫ УПРАВЛЕНИЯ НА ПРЕДПРИЯТИИ 26
    ГЛАВА 2. РАССМОТРЕНИЕ СИСТЕМЫ УПРАВЛЕНИЯ ПРЕДПРИЯТИЕМ 40
    2.1. ОБЩАЯ ХАРАКТЕРИСТИКА ПРЕДПРИЯТИЯ 40
    2.2. АНАЛИЗ ДЕЯТЕЛЬНОСТИ ПРЕДПРИЯТИЯ 45
    2.3. АППАРАТ УПРАВЛЕНИЯ НА ПРЕДПРИЯТИИ 61
    2.4. ДЕЙСТВИЯ ПО МОДЕРНИЗАЦИИ УПРАВЛЕНИЯ НА ПРЕДПРИЯТИИ 66
    СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 86
    ПРИЛОЖЕНИЯ 89
  • Контрольная работа:

    Правоохранительные органы задачи

    16 страниц(ы) 

    Задача № 1….3
    Задача № 2…10
    Список использованных источников и литературы….…16
  • Контрольная работа:

    Контрольная по английскому языку. Вариант 3. Юридическая тематика

    8 страниц(ы) 

    Задание 1. Переведите на русский язык и определите видовременную форму глагола и его залог: 2
    Задание 2. Переведите предложения, и определите степени сравнения прилагательных: 2
    Задание 3. Переведите предложения, обращая внимание на перевод модальных глаголов: 2
    Задание 4. Переведите, предложения обращая внимание на неопределенные местоимения: 3
    Задание 5. Прочтите и переведите текст и ответьте на вопрос: What trials lie with the Crown Court? 3
    The Crown Court 3
  • Дипломная работа:

    Исторические и культурные аспекты развития парфюмерной традиции: от сакрального к повседневному использованию

    64 страниц(ы) 

    Введение 3
    Глава 1. Парфюмерная традиция в истории человечества 9
    1.1. Взаимодействие парфюмерии и культуры 9
    1.2. Эволюция парфюмерной традиции 18
    1.3.Запах в пространстве сакральной сферы культуры 25
    Глава 2. Изменение ниш применения парфюмерии в зависимости от смены эпох 30
    2.1. Древний Египет и античность 30
    2.2. Средние века 33
    2.3. Эпоха Просвещения 36
    2.4. Индустриальная революция, конец 19 - начало 20 веков. 38
    2.5. Наше время 50
    Глава 3. Парфюмерная традиция как важный элемент культуры повседневности 54
    Заключение 58
    Список литературы 61
  • Курсовая работа:

    Проектирование и защита распределенной базы данных «Приемная комиссия»

    48 страниц(ы) 

    Задание на курсовой проект 3
    Введение 4
    1. Обзор методов защиты данных информационных систем 5
    2. Выбор СУБД для создания базы данных "Приёмная комиссия" 7
    3. Создание UML-модели базы данных 10
    4. Переход от UML-модели к реляционному проекту базы данных с учетом связей 12
    5. Загрузка базы данных 14
    6. Разработка средств защиты информации в базе данных 16
    6.1 Обеспечение сетевой безопасности базы данных 17
    6.2 Обеспечение внутренней безопасности базы данных 19
    6.3 Реализация требований к парольной аутентификации 22
    7. Шифрование и хеширование данных 23
    7.1 Создание триггера для шифрования информации в базе данных 25
    7.2 Создание представления для получения расшифрованных данных 29
    8. Установка нового подключения к удаленной базе данных Oracle в интегрированной среде разработки приложений IDE NetBeans 30
    9. Фрагментация таблиц базы данных по узлам с использованием "Снимка структуры" 33
    10. Определение связи баз данных для фиксированного пользователя 36
    11. Создание материализованного представления для удаленной базы данных 37
    Заключение 39
    Библиографический список 40
    Приложение 1 41
    Приложение 2 44
    Приложение 3 46
    Приложение 4 47
    Приложение 5 48