Методика исследования асимптотических разложений решений одного класса обыкновенных дифференциальных уравнений второго порядка - Дипломная работа №33075

«Методика исследования асимптотических разложений решений одного класса обыкновенных дифференциальных уравнений второго порядка» - Дипломная работа

  • 05.11.2023
  • 50
  • 1927

Содержание

Введение

Выдержка из текста работы

Заключение

Список литературы

фото автора

Автор: navip

Содержание

Введение 3

Глава 1.ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И АСИМПТОТИЧЕСКИЕ РАЗЛОЖЕНИЯ РЕШЕНИЙ 5

1.1. Дифференциальное уравнение второго порядка 5

1.2. Определения и свойства асимптотических рядов 8

1.3. Преобразование Лиувилля. 13

1.4. Асимптотика решения дифференциального уравнения второго порядка. 17

Глава 2.НАХОЖДЕНИЕ ФОРМАЛЬНОГО АСИМПТОТИЧЕСКОГО РАЗЛОЖЕНИЯ РЕШЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ 26

2.1. Постановка задачи и нахождение формального асимптотического разложения решения 26

Заключение 23

Приложение 1 23

Приложение 2 43

Приложение 3 44

Литература 45


Введение

Теория асимптотических рядов, дремавшая в течении десятилетий, последние годы добилась больших успехов. Это обусловлено пониманием того факта, что успешное применение асимптотических рядов неразрывно связано с использованием определенного метода их суммирования. Ничего удивительного в этом нет: выписывая любой ряд, нужно отдавать себе отчет, как его суммировать. Очень редко наивная процедура сложения последовательных членов приводит к успеху. При вычислении даже сходящихся рядов часто приходится прибегать к различным приемам.

Обыкновенные дифференциальные уравнения применяются для описания многих процессов реальной действительности. Трудно представить себе область науки или производства, в которой не возникала необходимость использования дифференциальных уравнений. В частности, к ним относятся различного рода физические и химические процессы и т.д. Действительно, если некоторая физическая величина оказывается меняющейся со временем под воздействием тех или иных факторов, то, как правило, закон ее изменения по времени описывается именно дифференциальным уравнением, т.е. уравнением, связывающим исходную переменную как функцию времени и производные этой функции. Решение уравнения с анализом его зависимости от параметров задачи и начального состояния системы позволяет установить общие закономерности изменения исходной физической величины.

Постановка задачи. В данной выпускной квалификационной работе исследуется дифференциальное уравнение второго порядка:

(t) – t – µ =0, (1)

Требуется найти решение уравнения (1) удовлетворяющие условиям

(0) = 1, u 0 при t +∞. (2)

Понятия асимптотические разложения функции и асимптотический ряд были введены А. Пуанкаре в связи с задачами небесной механики. Частные случаи асимптотических разложений применялись еще в 18 в. Асимптотические разложения и ряды играют большую роль в различных задачах математики, механики и физики. Это вызвано тем, что многие задачи нельзя решить точно, но удается получить асимптотическое разложения решений. Кроме того, численные методы часто отказывают именно в тех случаях, когда асимптотические разложения удается сравнительно просто найти.

Асимптотические разложения заданных и искомых функций широко распространены при применении аналитических методов построения решения. Обычно это — разложения по целым положительным или отрицательным степеням независимой переменной либо параметра, входящего в уравнение. Такие разложения используются как для вычисления значений решения, так и для исследования его поведения.


Выдержка из текста работы

Глава 1.ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И АСИМПТОТИЧЕСКИЕ РАЗЛОЖЕНИЯ РЕШЕНИЙ

1.1. Дифференциальное уравнение второго порядка

Уравнения

F )=0 (1)

называется дифференциальным уравнением второго порядка.

Предполагается, что F(u, v, w, g) - заданная непрерывно дифференцируемая функция от точек (и, v, w, g) некоторой области Ω

четырехмерного пространства.

Любая функция у = у(х) имеющая на некотором интервале непрерывную производную второго порядка и удовлетворяющая

уравнению (1), называется решением этого уравнения или его интегральной кривой.

Каждое из них у = у(х) определено, вообще говоря, на некотором своем интервале а < < b. Конечно, для любого х из этого интервала точка

( Ω

Нередко на решение, которое ищут, накладывают дополнительные условия. Особый интерес представляют такие условия, которые гарантируют единственное решение уравнения. Обычно эти условия имеют вид

(2)

и называются начальными условиями. Задача нахождения решения уравнения (1), удовлетворяющего начальным условиям (2), называется задачей Коши. С геометрической точки зрения условия (2) означают, что из семейства интегральных кривых, проходящих через точку ( , мы

выделяем определенную интегральную кривую, имеющую заданный угол наклона

В уравнение (1) могут не входить явно все переменные х, у, но у" должно входить, иначе это уравнение не будет дифференциальным уравнением второго

порядка, например,

х2 + + = 0, + 1 = 0.

Разрешим уравнение (1) относительно у". Будем предполагать это возможным. Из теории неявных функций известно, что если функция F(u, v, w, g) равна нулю в некоторой точке (и0, v0, w0, g0) имеет непрерывные частные производные в окрестности этой точки и частная производная этой точке, то уравнение F (u, v, w,g) = 0 имеет в некоторой окрестности указанной точки решение g = f (u, v, w) и притом единственное.

Тогда уравнение (1) примет вид

, (3)

где функция f (u, v, w) задана на некоторой области Ω трехмерного пространства точек (и, v, w), непрерывна на ней и имеет непрерывные частные производные. Функция f может и не зависеть явно от некоторых из переменных x, у, у'. Например, это имеет место для уравнений

.

Пусть некоторая интегральная кривая у = у(х) проходит через точку ( ) и имеет в этой точке угловой коэффициент касательной, равный

заданному числу (т.е. ).

Этим однозначно определяется вторая производная от у(х) в точке , равная

(

Однако возникает вопрос, если мы зададим х = х0 и произвольные числа , то существует ли на самом деле интегральная кривая у =у(х)

уравнения (3), для которой у(х0) = , у'(хо) = , и как много таких интегральных кривых. Следующая теорема показывает, что если функция f в окрестности точки ( , ,) достаточно гладкая, то такая интегральная кривая существует и притом одна [3].

Теорема 1. Пусть правая часть уравнения (3), рассматриваемая как функция трех переменных (х, у, у'), заданная на трехмерной области

ω, непрерывна и имеет на этой области непрерывные частные

производные

, .

Тогда, какова бы ни была точка ∊ ω, существует интервал (а, b) и определенная на нем дважды непрерывно дифференцируемая функция у = у(х), удовлетворяющая дифференциальному

уравнению (3) и начальным условиям у(х0) = , у'(хо) = ,

Функция, обладающая указанными свойствами, единственная.

Про функцию у(х) говорят, что она есть решение (интегральная кривая) дифференциального уравнения (3), удовлетворяющее начальным условиям (2). Или еще говорят, что она решает задачу Коши для указанных начальных условий.

Каждое такое решение удобно записывать в виде у(х)=у ,

где - параметры решения. Они независимы - их можно взять какими угодно, лишь бы точка ∊ ω.

Если зафиксировать х0, то каждой системе чисел ∊ ω, соответствует решение дифференциального уравнения

(3), которое можно записать (при фиксированном х0) в виде

у = у

где - произвольные постоянные - параметры [3].

1.2. Определения и свойства асимптотических рядов

Введем понятие асимптотического ряда. Рассмотрим некоторый ряд при

Определение 1.1. Пусть функция определена при всех достаточно больших . Будем говорить, что для функции справедливо асимптотическое представление при , если для этих

= ,

где каждый последующий член суммы по порядку меньше предыдущего, т.е.

Это определение весьма общее, и во многих задачах удобнее

конкретизировать вид функций .

И дадим определения асимптотического разложения по степеням

аргумента .

Определение 1.2. Пусть функция определена при для некоторого положительного А. Ряд

(1)

называется асимптотическим рядом функции при , если

для любого натурального и любого справедливо неравенство

(2)

где — некоторая положительная постоянная, вообще говоря зависящая от .

В случае выполнения неравенств (2) говорят также, что функция разлагается в асимптотический ряд (1) при , что записывается в виде

,

Определение 1.3. Пусть функция определена при для некоторого . Ряд

(3)

называется асимптотическим рядом функции при , если

для любого натурального и любого справедливо неравенство

(4)

где — некоторая положительная постоянная, вообще говоря

зависящая от .

В случае выполнения неравенств (4) говорят также, что функция разлагается в асимптотический ряд (3) при , что записывается в виде

, .

Если функция бесконечно дифференцируема в окрестности нуля, то она разлагается в асимптотический ряд по степеням при . Это немедленно вытекает из известной формулы

0 𝛳

и из определения асимптотического ряда.

В частности, если функция аналитична в окрестности нуля, то она по определению разлагается в сходящийся степенной ряд

который одновременно является и асимптотическим [6].

Для асимптотических рядов справедливы свойства, аналогичные свойствам сходящихся рядов [6].

Теорема 2.1. Пусть последовательность функций является калибровочной системой при и

. .

Тогда линейная комбинация также разлагается в асимптотический ряд при .

Теорема 2.2. Пусть функции и разлагаются в асимптотические ряды при :

.

Тогда функция также разлагается в асимптотический ряд при

где коэффициенты ck вычисляются так же, как и при умножении многочленов, путем формального перемножения асимптотических

рядов:

Теорема 2.3. Пусть функции и разлагаются в асимптотические ряды, при

.

и

Тогда функция также разлагается в асимптотический ряд

при

где - некоторые постоянные.

Условие для функций , разлагающихся в асимптотический ряд вида

эквивалентно условию: функция , непрерывна в нуле и .

Ясно, что это условие является существенным, так как даже для такой

простой функции, как ≡ функция уже не разлагается в асимптотический ряд вида

,

Для того чтобы существенно расширить класс функций,

допускающих операцию деления, удобно ввести калибровочные функции с любыми целыми показателями и ряды вида

.

где — какое-нибудь целое число (возможно, и отрицательное). Так что этому классу функций принадлежат, например, функции , — это любой многочлен, не равный нулю тождественно [6].

Теорема 2.4.Пусть функции и разлагаются в асимптотические ряды вида при

.

Тогда функция также разлагается в асимптотический ряд вида при

Теорема 2.5. Пусть функция разлагается в асимптотический ряд вида при

и хотя бы один из коэффициентов Тогда функция также

разлагается в асимптотический ряд вида при

Теорема 2.6. Пусть функция определена и интегрируема по Риману на отрезке 0 разлагается е асимптотический ряд при

Тогда также разлагается в асимптотический ряд при

Теорема 2.7. Пусть функция определена при 0 , интегрируема по Риману на отрезке при всех и разлагается в асимптотический ряд при

где < 0. Тогда также разлагается в асимптотический ряд при

(Если , mo в этом равенстве первая сумма, естественотсутствует). Здесь постоянная

Теорема 2.8. Пусть функция определена и интегрируема по Риману при 0 и разлагается в асимптотический ряд при

где < 0. Тогда также разлагается в асимптотический ряд при

1.3. Преобразования Лиувилля.

1.1. Рассмотрим дифференциальное уравнение вида

(1.1)

в котором - действительная или комплексная переменная, -заданная функция. Все однородные линейные дифференциальные уравнения второго порядка могут быть приведены к этому виду подходящей заменой зависимой или независимой переменной.

Простейшее приближение получается, если предположить, что -постоянная величина. Тогда + (1.2) где А и В — произвольные постоянные. Приближение имеет такой же вид, если функция непрерывна, а рассматриваемые интервал или область достаточно малы и не содержат начала координат. Другими словами, формула (1.2) дает описание локального поведения решений. В частности, можно ожидать, что в интервале, где функция действительна, положительна и медленно меняется, решения уравнения (1.1) имеют экспоненциальный характер, т. е. могут быть записаны в виде линейной комбинации двух

решении, величины которых монотонно изменяются, причем одно возрастает, а другое убывает.

Аналогично можно ожидать, что в интервале, где функция отрицательна, решения (1.1) имеют тригонометрический (или осцилляторный) характер.

1.2. Для большинства задач приближение (1.2) слишком грубо. Мы попытаемся улучшить его, предварительно преобразовав (1.1) в дифференциальное уравнение такого же типа, в котором функция заменена функцией, изменяющейся медленнее [4].

Теорема 1.1. Пусть w удовлетворяет уравнению (1.1), -произвольная трижды дифференцируемая функция и-

W= . (1.3)

Тогда функция W удовлетворяет уравнению

,

где точка обозначает дифференцирование по .

Это утверждение проверяется прямой подстановкой. Если рассматривать как независимую переменную, то уравнение (1.01) преобразуется в

Слагаемое с первой производной исчезает, если взять новую зависимую переменную в форме (1.3). При этом уравнение принимает вид (1.1).

Преобразование, указанное в теореме, известно под названием преобразования Лиувилля. Второе слагаемое в коэффициенте перед W в (1.4) часто записывают в виде

,

где производная в смысле Шварца,

1.3. Для заданной функции добиться, чтобы коэффициент перед W в (1.4) был постоянной величиной, не проще, чем точно решить первоначальное дифференциальное уравнение (1.1). Поэтому мы ограничимся тем, что выберем так, чтобы член был постоянным, причем мы можем без потери общности считать его равным единице [4]. Тогда

(1.4)

Если предположить, что функция дважды дифференцируема то можно вычислить производную в смысле Шварца, и уравнение (1.4) принимает вид

= (1.5)

где

φ== . (1.6)

До сих пор выкладки были точными. Если же теперь пренебречь вкладом φ, то независимыми решениями уравнения (1.6) будут функции .

Возвращаясь к первоначальным переменным и замечая, что мы получаем

(1.7)

где — произвольные постоянные. Это выражение называется приближением Лиувилля — Грина (ЛГ) для общего решения уравнения (1.1). Выражения в формуле (1.8) exp и exp называются ЛГ- функциями.

Очевидно, что точность приближения (1.8) связана с величиной отбрасываемой функции φ в рассматриваемой области. Отметим следующее: можно ожидать, что величина |φ| мала и, следовательно, приближение становится более точным, если величина | достаточно мала или медленно меняется. Этим условием охватывается и случай, когда применимо более простое приближение (1.2).

Отметим сразу же важный случай, когда указанное приближение становится неприменимым: интервалы или области содержат нули функции . Очевидно, что тогда функция φ обращается в бесконечность в этих точках и приближение теряет смысл. Нули называются точками поворота или точками ветвления дифференциального уравнения (1.1).

Основанием для таких названий — является то, что когда переменные действительны, а нуль — простой (или, в более общем случае, нечетного порядка), то он отделяет интервал, в котором решения имеют экспоненциальный вид, от интервала, где они осциллируют [4].

1.4. Другой формальный путь вывода ЛГ- приближения состоит в использовании уравнения Риккати

,

которое можно получить из (1.1) с помощью подстановки w=exp . Чтобы решить это уравнение, мы сначала отбросим слагаемое и получим, что . В качестве второго приближения имеем

при условии, что . Интегрирование последнего выражения приводит к формуле (1.8).

1.5. Преобразование, определяемое формулами (1.3) и (1.5), можно применить и к дифференциальному уравнению

. (1.8)

Тогда мы получим

(1.9)

где функция определяется равенством (1.7). Так же, как и раньше, если | | | | в интересующей нас области, то можно надеяться, что выражение (1.8) приближает решения (1.9).

Мы можем, конечно, рассматривать коэффициент в (1.9) как одну функцию переменной и использовать формулу (1.8), заменяя на . Однако когда коэффициент перед w разбивается на две части, часто можно получить лучшее приближение; кроме того, упрощается вычисление интеграла в (1.8) [4].

1.4 Асимптотика решения дифференциального уравнения второго порядка.

1.1. Рассмотрим уравнение

+ , (1)

где при Будем предполагать, что при справедливо асимптотическое разложение

. (2)

Учитывая это разложение, нетрудно построить формальные ряды,

которые на бесконечности ведут себя приблизительно как или

и формально удовлетворяют уравнению (1). Будем искать такой ряд

в виде

. (3)

Так как решение однородного уравнения (1) после умножения на

постоянную снова остается решением этого уравнения, то постоянную

0 можно выбрать произвольно. Будем считать, что

(4)

Подставим ряд (3) в уравнение (1), где заменим рядом (2). После сокращения на получается формальное равенство

+

Приравнивая коэффициенты при одинаковых степенях t, получаем

рекуррентную систему уравнений:

0= ,

0= ,

…. (5)

0= ,

Из этих соотношений последовательно определяются все .

Тем самым построен ряд (3). Вообще говоря, этот ряд расходится, но можно хотя бы ожидать, что он является асимптотическим (при ) рядом для какого-нибудь решения уравнения (1).

Теорема 22.1. Существует решение уравнения (1), которое при разлагается в асимптотический ряд (3), где коэффициенты определяются соотношениями (4), (5). Это означает, что

(6)

Проверим, что ряд (3) является асимптотическим решением уравнения (1) при . Это означает, что частичная сумма ряда (3)

(7)

приближенно удовлетворяет уравнению. Более точно:

L (8)

Здесь и далее используется обозначение

+

Действительно, при подстановке всего ряда (3) в уравнение (1)

обращаются в нуль коэффициенты при всех степенях t. А отсутствующие в члены

после подстановки в оператор L образуют степени с показателем, не

превышающим ).

Рассмотрим Леммы: Лемма 1. Пусть функция = при, , г > 1, . Тогда уравнение

(9)

имеет при единственное решение порядка и для этого решения справедлива формула

. (10)

Лемма 2. Пусть функция удовлетворяет условиям леммы 1, а функция , при , α > 1.

Тогда уравнение

+[ (11)

имеет при единственное решение порядка .

Доказательство теоремы : Надо показать, что существует решение уравнения (1), которое разлагается в построенный выше формальный ряд (3). Для этого рассмотрим частичную сумму ряда (7). Как отмечено выше,

L

Функция ≡1 Согласно лемме 2 существует

решение уравнения

такое что

Поэтому их разность удовлетворяет уравнению

(1), причем Тем самым доказательство

теоремы было бы завершено, если бы функция не зависела от n.

В этом довольно легко убедиться, опираясь опять-таки на лемму 2.

Действительно, функция также удовлетворяет однородному уравнению причем

=

Согласно лемме 2 решение однородного уравнения, которое так

быстро стремится к нулю при , тождественно равно нулю.

Следовательно, , чем и завершается доказательство

теоремы.

Равенство (6) означает существование решения уравнения (1), такого что

, ,

где — решение выписанной выше рекуррентной системы (5).

1.2. Рассмотрим дифференциальное уравнение второго порядка [6]

+ , (1)

Известно, что при достаточно широких предположениях относительно функции Q(t) можно получить асимптотические разложения решений этого уравнения при больших значениях аргумента t. Так называемый метод ВКБ позволяет получать такие разложения.

Если к уравнению (1) применить сначала второе, а потом первое преобразования Лиувилля, то главный член асимптотики будет иметь как раз вид :

.

Рассмотрим применения преобразований Лиувилля.

Теорема 1. Пусть коэффициент в уравнении (1) обладает следующими свойствами:

1) ,

2) , такое что , при

3) ∃γ, такое что

4) Существует формальное асимптотическое решение уравнения (1) вида

,

- калибровочные функции.

Тогда существует решение уравнения (1), для которого это формальное асимптотическое решение является асимптотическим разложением при

Доказательство. Перейдем в уравнении (1) к новой независимой переменной:

, (2)

после чего уравнение (1) приобретает вид

или

при зависимости вида (2).

После замены ,

,

Получим новое уравнение для функции

где связана с формулой (2).

И так условие сформулированное в теореме, является достаточным для того, чтобы формальный ряд (если он существует) являлся асимптотическим разложением некоторого решения уравнения (1).

Теперь рассмотрим, как искать формальное асимптотическое решение уравнения (1), не переходя к новой переменной. Достаточно сделать замену неизвестной функции:

=

Решение получившегося уравнения

+ =0

зачастую можно найти в виде формального ряда, первый член которого

равен единице [6].

И так, рассмотрим в качестве примера уравнение

(3)

Приложение 1

Программа на языке Delphi

unit Unit1;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, StdCtrls;

type

TForm1 = class(TForm)

Label1: TLabel;

Label2: TLabel;

Label3: TLabel;

Label4: TLabel;

Label5: TLabel;

Label6: TLabel;

Label7: TLabel;

Label8: TLabel;

Label9: TLabel;

Label10: TLabel;

Edit1: TEdit;

Edit2: TEdit;

Edit3: TEdit;

Edit4: TEdit;

Edit5: TEdit;

Edit6: TEdit;

Edit7: TEdit;

Button1: TButton;

Memo1: TMemo;

Edit9: TEdit;

procedure Button1Click(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Form1: TForm1;

m:Real;

implementation

function u(x,y,z:real):real; begin

u:=z;

end;

function v(x,y,z:real):real;

begin

v:=x*z+m*ln(1+y);

end;

{$R *.dfm}

procedure TForm1.Button1Click(Sender: TObject);

var

i: integer;

x,x0,y,z:real;

c,cl,c2:real;

h:real;

kl,k2,k3,k4,l1,l2,l3,l4:real;

s:array[1.5] of real;

d:array[1.5] of real;

e:array[1.5] of real;

begin

h:=-0.0001;

m:=strtofloat(edit5.text);

x0:=strtoint(edit9.text);

cl:=strtofloat(edit6.text);

c2:=strtofloat(edit7.text); repeat

c:=(cl+c2)/2;

x:=x0;

s[1]:=4;

s[2]:=-s[1]*s[1]/2;

s[3]:=(s[1]*s[1]*s[1]-3*s[1]*s[2])/6;

s[4]:=(4*s[1]*s[1]*s[2]-2*(s[2]*s[2]+2*s[1]*s[3])-s[1]*s[1]*s[1]*s[1])/12;

s[5]:=(-5*(s[2]*s[3]+s[1]*s[4])+5*(s[1]*s[2]*s[2]+s[1]*s[1]*s[3])-5*s[1]*s[1]*s[1]*s[2]+s[1]*s[1]*s[1]*s[1]*s[1])/20;

d[1]:=-m*(m+1)*s[1]/2;

d[2]:=-(m*s[1]*d[1]-2*m*(-2*m-1)*s[2])/(m+2);

d[3]:=(3*m*(-3*m-1)*s[3]+m*s[1]*s[1]*d[1]-m*(s[1]*d[2]+s[2]*d[1]))/(2*m+2);

d[4]:=(4*m*(-4*m-1)*s[4]-m*(s[2]*d[2]+s[3]*d[1]+s[1]*d[3])-m*s[1]*s[1]*s[1]*d[1]+m*(s[1]*s[1]*d[2]+3*s[1]*s[2]*d[1]))/(3*m+2);

d[5]:=(-2*(-5*m)*(-5*m-1)*s[5]-m*(2*s[1]*s[1]*s[1]*d[2]+6*d[1]*s[1]*s[1])-2*m*(d[2]*s[3]+s[2]*d[3]+s[1]*d[4]+d[1]*s[4])+2*m*s[1]*s[1]*s[1]*s[1]*d[1])+2*m*(s[1]*s[1]*d[3]+s[2]*s[2]*d[1]+3*s[1]*s[3]*d[1])/2*(4*m+2);

e[1]:=(m+2)*(-m-3)*d[1]/4;

e[2]:=(-m*(2*s[1]*e[1]+d[1]*d[1])+2*(2*m+2)*(-2*m-3)*d[2])/2*(m+4);

e[3]:=(3*m+2)*(-3*m-3)*d[3]-m*(d[1]*d[2]+e[2]*s[2]-s[1]*d[1]*d[1]-s[1]*s[1]*e[1])/(2*m+4);

e[4]:=(2*(4*m+2)*(-4*m-3)*d[4]-m*(2*s[1]*s[1]*s[1]*e[2]+3*d[1]*d[1]*s[2]*s[2])-m*(2*s[1]*e[2]+2*s[3]*e[1]+d[2]*d[2]+2*d[1]*d[3]+2*s[1]*e[3])+2*m*(s[1]*s[1]*e[2]+d[1]*d[1]*s[2]+3*s[1]*d[1]*e[1]+3*s[1]*e[1]*s[2]))/2*(3*m+4);

e[5]:=((5*m+2)*(-5*m-3)*d[5]-m*(s[1]*s[1]*e[3]+s[1]*d[2]*d[2]+d[1]*d[1]*s[3]+e[1]*s[2]*s[2]+2*s[1]*d[1]*d[3]+2*s[1]*e[1]*s[3]+2*s[1]*s[2]*e[2]+2*d[1]*s[2]*d[2]+4/3*s[3]*s[3]*s[3]*d[1]*d[1]+2/3*s[1]*s[1]*s[1]*s[1]*e[1]))/(4*m+4);

y:=0;

for i:=1 to 5 do

y:=y+(s[i]/c*exp((-i*m)*ln(x0))+d[i]/c*exp((-i*m-2)*ln(x0))+e[i]/c*exp((-i*m-4)*ln(x0)));

z:=0;

for i:=1 to 5 do

z:=z+(-(i*m)*s[i]/c*exp((-i*m-1)*ln(x0))

-(i*m+2)*d[i]/c*exp((-i*m-3)*ln(x0))

-(i*m+4)*e[i]/c*exp((-i*m-5)*ln(x0))); repeat

kl:=h*u(x,y,z);

l1:=h*v(x,y,z);

k2:=h*u(x+h/2,y+kl/2,z+l1/2);

l2:=h*v(x+h/2,y+kl/2,z+l1/2);

k3:=h*u(x+h/2,y+k2/2,z+l2/2); // 12

l3:=h*v(x+h/2,y+k2/2,z+l2/2); // 12

k4:=h*u(x+h,y+k3,z+l3);

l4:=h*v(x+h,y+k3,z+l3);

y:=y+(kl+2*k2+2*k3+k4)/6;

x:=x+h;

z:=z+(l1+2*l2+2*l3+l4)/6;

until x<0;

Memo1.Lines.Add('c = '+FloatToStr(c)+' : ó='+FloatToStr(y)); if y<1 then c2:=c else cl:=c;

until (abs(cl-c2))<0.00000001;

edit1.Text:=floattostr(y);

edit2.Text:=floattostr(z);

edit3.Text:=floattostr(c);

edit4.Text:=floattostr(round(x*10)/10);

end;

end.


Заключение

В данной выпускной квалификационной работе была рассмотрена задача построения решения обыкновенного дифференциального уравнения второго порядка

(t) – t – µ =0,

удовлетворяющее условию (0) = 1, u 0 при t +∞.

Построено формальное асимптотическое разложение решения уравнения

(t) – t – µ =0 с условием (0) = 1, u 0 при t +∞. Формальное асимптотическое разложение имеет вид

+ + +…+

+ + +…+

+ + +…+

+ + +…+

+ + +…+

где коэффициенты


Список литературы

1. Ахметов Р.Г. Асимптотики решений одного класса квазилинейных обыкновенных дифференциальных уравнений второго порядка /Дифференциальные уравнения. 2010. Т.46, №2. С.155-162.

2. Ахметов Р.Г. Существование и асимптотика решений одного класса квазилинейных обыкновенных дифференциальных уравнений второго порядка /Дифференциальные уравнения. 2005. Т.41, №6. С.723-729.

3. Бугров Я.С., Никольский С.М.; Под редакцией Садовничего В.А. Высшая математики: т 3, 6-е изд., стереотип. – М.: Дрофа, 2004.-512с.

4. Вазов В. Асимптотические разложения решений дифференциальных уравнений. – М.: Мир, 1968. – 464с.

5. Ильин А. М. Согласование асимптотических разложений решений краевых задач. – М.: Наука, 1989. – 336с.

6. Ильин А. М., Данилин А.Р. Асимптотические методы в анализе. – М.: Физматлин, 2009.- 248с.

7. Копсон Э.Т. Асимптотические разложения.-М.:МИР, 1966.-156с.

8. Найф А.Х. Методы возмущений .-М.:МИР, 1976.-456с.

9. Тихонов А.Н., Самарский А.А. Уравнения математической физики: Учеб. пособие для гос.университетов.-М.:Наука, 1972-735с.

10. Федорюк М.В. Обыкновенные дифференциальные уравнения: 2-е изд.-М.: Наука, 1985.-448с

11. Ф.Ольвер Введение в асимтотические методы и специальные функции.-М.:Наука,1978-376с.


Тема: «Методика исследования асимптотических разложений решений одного класса обыкновенных дифференциальных уравнений второго порядка»
Раздел: Математика
Тип: Дипломная работа
Страниц: 50
Стоимость
текста
работы:
1750 руб.
Нужна похожая работа?
Закажите авторскую работу по вашему заданию.
  • Цены ниже рыночных
  • Необходимый уровень антиплагиата
  • Прямое общение с исполнителем вашей работы
  • Бесплатные доработки и консультации
  • Минимальные сроки выполнения
  • Пишем сами, без нейросетей

Мы уже помогли 24535 студентам

Средний балл наших работ

  • 4.89 из 5
Узнайте стоимость
написания вашей работы
Похожие материалы
  • Дипломная работа:

    Методика исследования асимптотических решений одного класса обыкновенных дифференциальных уравнений второго порядка

    45 страниц(ы) 

    Введение 3
    Глава I. Дифференциальные уравнения и асимптотические разложения решений 6
    1.1. Дифференциальные уравнения второго порядка 6
    1.2. Преобразование Лиувилля 9
    1.3. Определение асимптотического ряда 14
    1.4. Свойства асимптотических рядов 15
    1.5. Классификация особых точек; свойства решений в окрестности регулярной особой точки 21
    Глава II. Нахождение формального асимптотического разложения решения дифференциального уравнения 25
    2.1. Постановка задачи. Нахождение формального асимптотического разложения решения 25
    2.2. Численные решения 32
    Заключение 34
    Список использованной литературы 35
    Приложения 37
    Приложение 1. Программа на языке Delphi 37
    Приложение 2. Результаты вычислений 41
  • ВКР:

    Методика применения компьютерного моделирования для решения дифференциальных уравнений и в школьном курсе информатики

    85 страниц(ы) 

    Введение 3
    1 Дифференциальные уравнения и асимптотические разложения решений 6
    1.1 Линейные дифференциальные уравнения 6
    1.2 Нелинейные дифференциальные уравнения 11
    1.3 Асимптотические оценки и их свойства 15
    1.4 Асимптотические ряды и их свойства 18
    1.5 Определение и основные свойства асимптотических разложений 22
    1.6 Метод Рунге-Кутта для решения дифференциальных уравнений 24
    Выводы по первой главе 25
    2 Моделирование решения краевой задачи для одного класса обыкновенных дифференциальных уравнений 26
    2.1 Постановка задачи и нахождение формального асимптотического разложения решения дифференциального уравнения 26
    2.2 Нахождение численного решения обыкновенного дифференциального уравнения второго порядка 28
    Выводы по второй главе 31
    3 Методика применения компьютерное моделирование в школьном курсе информатики 32
    3.1 Основные понятия и принципы компьютерного моделирования 32
    3.2 Анализ элективных курсов по компьютерному моделированию в школе. 37
    3.3 Элективный курс по компьютерному математическому моделированию в Maple 40
    Выводы по третьей главе 55
    Заключение 57
    Список использованной литературы 59
    Приложения 62
  • Дипломная работа:

    Оценки решений краевой задачи для одного класса дифференциальных уравнений второго порядка

    32 страниц(ы) 

    Введение…. 3
    Глава I. Краевые задачи для эллиптических дифференциальных уравнений второго порядка
    1.1 Классификация дифференциальных уравнений второго порядка …. 5
    1.2 Класс функций . Определение непрерывности функций по Гельдеру ….…. 7
    1.3 Принцип максимума для эллиптических уравнений…. 8
    1.4 Теорема существования решения для эллиптических уравнений… 10
    1.5 Критерий компактности …. 12
    1.6 Теорема Лагранжа о конечных приращениях … 12
    Глава II. Оценки решений краевой задачи для одного эллиптического уравнения второго порядка
    2.1 Постановка задачи …. 14
    2.2 Доказательство существования и единственности решения краевой задачи … 15
    2.3 Оценки решения краевой задачи …. 21
    Заключение …. 27
    Литература ….…. 28
    Приложение (графики)….…. 29
  • Дипломная работа:

    Асимптотическое разложение решения одномерной краевой задачи дирихле с быстроосциллирующимся потенциалом

    18 страниц(ы) 

    1.Введение….3
    2. Определение и основные свойства асимптотических разложений….4
    3. Постановка задачи…6
    4. Построение формального асимптотического решения по малому параметру.…7
    5. Построение асимптотического решения по малому параметру…12
  • Дипломная работа:

    Оценки решений краевой задачи для одного эллиптического дифференциального уравнения

    26 страниц(ы) 

    ВВЕДЕНИЕ 3
    1 Краевые задачи для квазилинейных эллиптических дифференциаль-
    ных уравнений второго порядка.
    1.1 Класс функций . Определение непрерывности функции по Гельдеру….….….….5
    1.2 Принцип максимума для эллиптических уравнений ….…6
    1.3 Теорема существования решения для квазилинейных эллиптических уравнений….….….….….13
    1.4 Критерий компактности….….….15
    2 Оценки решения краевой задачи для одного квазилинейного эллиптического уравнения второго порядка.
    2.1 Постановка задачи….….16
    2.2 Существование и единственность решения краевой задачи и оценки решения….….….….17
    Заключение 23
  • Дипломная работа:

    Нахождение линейных законов сохранения системы обыкновенных дифференциальных уравнений методом компьютерной алгебры

    28 страниц(ы) 

    Введение 2
    Глава 1 Первые интегралы системы обыкновенных дифференциальных уравнений 4
    Глава 2 Базис Гребнера 12
    2.1 Общие понятия базисов Гребнера 12
    2.2 Решение системы полиномов 14
    2.3 Алгоритмические построения базисов Гребнера 16
    2.4 Улучшенная версия алгоритма 17
    Глава 3 Нахождение линейных первых интегралов с помощью матричных преобразований. 21
    Заключение 25
    Литература 26
Другие работы автора
  • Дипломная работа:

    Воспитание физических качеств борцов 10-12 лет

    55 страниц(ы) 

    ВВЕДЕНИЕ 3
    ГЛАВА I. ТЕОРЕТИЧЕСКИЙ АНАЛИЗ ИЗУЧАЕМОЙ ПРОБЛЕМЫ 5
    1.1. Использование специализированных подвижных игр в спортивной деятельности 5
    1.2. Методика применения специализированных подвижных игр в начальной подготовке юных единоборцев 10
    1.3. Краткая характеристика основных физических качеств 14
    ВЫВОДЫ ПО ПЕРВОЙ ГЛАВЕ 23
    ГЛАВА II. ОРГАНИЗАЦИЯ И МЕТОДЫ ИССЛЕДОВАНИЯ 24
    2.1. Организация исследования 24
    2.2. Методы исследования 24
    ГЛАВА III. ОБОСНОВАНИЕ СОДЕРЖАНИЯ МЕТОДИКИ ВОСПИТАНИЯ ФИЗИЧЕСКИХ КАЧЕСТВ БОРЦОВ 10-12 ЛЕТ 27
    3.1 Теоретическое обоснование усовершенственной методики воспитания физических качеств у борцов 10-12 лет на занятиях борьбой… .27
    3.2. Усовершенствованная методика воспитания физических качеств борцов 10-12 лет 28
    ГЛАВА IV. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ 32
    4.1. Внутригрупповой анализ динамики показателей физических качеств в процессе педагогического эксперимента 32
    4.2. Межгрупповой анализ динамики физической подготовленности в процессе педагогического эксперимента 33
    ВЫВОДЫ 38
    ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ 39
    СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 40
    ПРИЛОЖЕНИЯ 45
  • Дипломная работа:

    Лингвостилистические и функциональные особенности заголовков в различных типах печатных изданий и их роль в обучении чтению на уроках иностранного языка

    71 страниц(ы) 

    Введение 3
    Глава I. Теоретические аспекты изучения заголовков печатных СМИ 6
    1.1 Жанры печатных СМИ 6
    1.2 Типы и функции заголовков 13
    1.3 Лингвостилистические особенности заголовков в печатных изданиях разного типа 18
    Выводы по первой главе 29
    Глава II. Практические аспекты изучения особенностей заголовков в немецкой и английской прессе 30
    2.1 Функциональные особенности заголовков печатных изданий немецкой и английской прессы 30
    2.2 Анализ немецкой и английской прессы на выявление лингвостилистических особенностей заголовков 35
    2.3 Методические рекомендации по использованию заголовков при формировании навыков чтения на уроках иностранного языка 46
    Выводы по второй главе 52
    Заключение 55
    Список использованной литературы 60
    Приложения 65
  • ВКР:

    Устаревшие слова в романе нурихана фаттаха “течет река итил”

    59 страниц(ы) 

    Кереш.3
    Төп өлеш
    Беренче бүлек
    Татар әдәбияты үсешендә мөһим роль уйнаган буын вәкиле - Нурихан Фәттах. Аның тормыш юлы һәм иҗаты….7
    1.1. Татар әдәбияты язучысы Нурихан Фәттахның тормыш юлы.7
    1.2. Язучы Нурихан Фәттах иҗатында “Ител суы ака торур” романының урыны.9
    Икенче бүлек
    Искергән сүзләр турында кыскача мәгьлумат
    2.1. Тарихи сүзләр турында төшенчә һәм аларның тематик төркемнәре.16
    2.2. Архаизмнар турында төшенчә һәм аларның төрләре.20
    2.3. Н. Фәттахның “Ител суы ака торур” романында искергән сүзләр.22
    Өченче бүлек
    Урта мәктәптә туган тел дәресләрендә лексика өйрәнү методикасы һәм күнегү үрнәкләре.
    3.1. Урта мәктәптә татар теле укыту программасына анализ.37
    3.2. Урта мәктәптә татар теле дәресләрендә искергән сүзләр темасын өйрәнү методикасы һәм бу теманы өйрәнү өчен күнегүләр.44
    Йомгак.56
    Файдаланылган әдәбият исемлеге.58
  • Курсовая работа:

    Особенности юмора в романах чарльза диккенса

    30 страниц(ы) 

    ВВЕДЕНИЕ … 3
    ГЛАВА 1. ОСОБЕННОСТИ ИЗУЧЕНИЯ ЮМОРА ….… 5
    1.1. Понятие юмора …. 5
    1.2. Юмор в жизни литературы …. 9
    ГЛАВА 2. ОСОБЕННОСТИ ЮМОРА В РОМАНАХ ЧАРЛЬЗА ДИККЕНСА …. 11
    2.1. Биография и творческий путь Чарльза Диккенса ….… 11
    2.2. Чарльз Диккенс: от юмориста до сатирика ….…. 17
    2.3. Юмор в романах Чарльза Диккенса … 20
    ЗАКЛЮЧЕНИЕ … 28
    СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ … 30
  • Шпаргалка:

    Ответы по Математике для менеджеров СПбГУ 2012/2013

    65 страниц(ы) 

    Линейная алгебра. Аналитическая геометрия.
    1. Определение вектора. Операции с векторами. Геометрическая интерпретация. Понятие линейной зависимости и независимости системы векторов.
    2. Понятие системы координат. Декартова система координат. Примеры. Размерность и базис арифметического пространства. Метрика.
    3. Координатные представления операций скалярного, векторного и смешанного произведений векторов. Вывод условий коллинеарности и компланарности векторов.
    4. Матрицы. Определение. Числовые характеристики. Алгебраические операции. Транспонирование.
    5. Квадратные матрицы. Миноры и алгебраические дополнения. Понятие определителя. Вычисление определителя квадратной матрицы любой размерности.
    6. Операция обращения квадратных матриц. Необходимые и достаточные условия ее выполнения. Алгоритм вычисления элементов обратной матрицы.
    7. Системы линейных уравнений. Матричная форма записи. Понятие решения.
    8. Метод Крамера решения систем линейных уравнений. Необходимые и достаточные условия его применения.
    9. Решение систем линейных уравнений методом обратной матрицы. Условия применимости.
    10. Ранг матрицы произвольной размерности. Элементарные операции, не приводящие к изменению ранга.
    11. Теорема Кронекера-Капелли о совместности системы линейных уравнений.(Формулировка).
    12. Теорема о решениях совместной системы линейных уравнений. (Формулировка).
    13. Метод Гаусса исследования систем линейных уравнений. (Алгоритм. Прямой и обратный ходы).
    14. Однородные системы линейных уравнений. Построение фундаментальной системы решений.
    15. Собственные числа и собственные векторы квадратной матрицы. Алгоритм вычисления.
    Пределы числовой последовательности и функции.
    16. Понятие функции. Определение. Область определения, область допустимых значений функции. Способы задания. Суперпозиция функций. Понятие обратной функции. Примеры.
    17. Свойства функций (четность, нечетность, периодичность, монотонность, выпуклость, вогнутость, экстремумы). Элементарные функции.
    18. Понятие числовой последовательности. Определение. Предел последовательности. Единственность предела числовой последовательности (доказательство).
    19. Арифметические операции с последовательностями, имеющими пределы (доказательство).
    20. Понятия бесконечно малой, бесконечно большой и ограниченной последовательностей. Свойства. Теорема о связи бесконечно малой и бесконечно большой (доказательство).
    21. Монотонные последовательности. Достаточные условия существования предела.
    22. Предельный переход в равенствах и неравенствах. Теорема о пределе сжатой последовательности (доказательство).
    23. Понятие предела функции в точке. Определения на языке последовательностей и на языке έ – δ.
    24. Односторонние пределы. Теорема о необходимом и достаточном условии существования предела функции в точке (доказательство).
    25. Теоремы об арифметических операциях с функциями, имеющими пределы (доказательства).
    26. Связь понятий предела функции в точке и бесконечно малой функции (доказательство).
    27. Пределы монотонных ограниченных функций.
    28. Определение непрерывности функции в точке и в области. Классификация разрывов функций.
    29. Теорема об обращении непрерывной функции в нуль на замкнутом интервале (Больцано-Коши) (доказательство).
    30. Теорема о промежуточном значении непрерывной функции на замкнутом интервале (Больцано-Коши).
    31. Теорема о необходимых и достаточных условиях существования обратной функции.
    32. Теоремы об области значений и о наибольшем и наименьшем значениях функции, непрерывной на замкнутом интервале (Вейерштрасс).
    Дифференциальное исчисление функций одной переменной.
    33. Определение производной функции. Геометрический и физический смысл производной.
    34. Односторонние производные функций. Теорема о существовании производной в точке. (доказательство).
    35. Правила вычисления производной суммы, произведения и частного функций (доказательства).
    36. Вывод формул вычисления производной сложной функции и обратной функции (доказательства).
    37. Дифференциал функции. Геометрический смысл дифференциала. Инвариантность формы дифференциала первого порядка (доказательство)
    38. Теорема о связи дифференцируемости функции и существовании производной (доказательство).
    39. Теорема Ферма (об обращении производной в нуль). Графическая интерпретация.
    40. Теорема Лагранжа (о конечных приращениях). Геометрическая интерпретация.
    41. Вывод формулы Маклорена для полинома.
    42. Формула Тейлора для гладкой функции. Представления остаточного члена.
    43. Необходимые и достаточные условия возрастания (убывания) функции (доказательство с использованием формулы Лагранжа или двучленной формулы Тейлора).
    44. Необходимые и достаточные условия локального экстремума непрерывной функции (доказательства для максимума и минимума с использованием трехчленной формулы Тейлора).
    45. Теоремы о выпуклости (вогнутости) графика непрерывной функции. Точки перегиба. (доказательство с использованием трехчленной формулы Тейлора).
    Функции многих переменных.
    47. Понятие функции многих независимых переменных. Область ее определения.
    Связные и несвязные области. Метрика n-мерного пространства. Определения.
    48. Окрестность точки в n-мерном пространстве. Понятие предела функции в
    точке и области. Определения.
    49. Частные и повторные пределы. Теорема о повторных пределах для функции двух
    независимых переменных. Определения и формулировка.
    50. Определение непрерывности функции многих переменных в точке и области.
    Формулировки теорем Вейерштрасса для замкнутой односвязной области.
    51. Частные производные функций многих переменных. Формула для вычисления
    полного дифференциала n-го порядка.
    52. Необходимые и достаточные условия максимума и минимума для функции
    двух независимых переменных.
    53. Понятие условного экстремума функций многих переменных. Метод Лагранжа
    отыскания стационарных точек.
    Неопределенный интеграл.
    54. Определение первообразной функции. Теорема о числе первообразных.
    Доказательство.
    55. Неопределенный интеграл. Определение и свойства.
    56. Вычисление площади области под графиком функции. Вывод формулы
    Ньютона- Лейбница.
    57. Вывод основных правил интегрирования.
    58. Вывод формул замены переменной и интегрирования по частям в
    неопределенном интеграле.
    Числовые и функциональные ряды.
    59. Понятие числового ряда. Частичные суммы. Определение сходимости ряда.
    60. Арифметические свойства сходящихся рядов. Формулировка и доказательство
    Необходимого условия сходимости числового ряда.
    61. Теоремы сравнения для положительных рядов. Доказательство одной из них.
    62. Признаки Д'Аламбера и Коши сходимости положительных рядов. Доказать
    теорему Коши.
    63. Интегральный признак Коши. Формулировка. Вывод условий сходимости
    гармонических рядов.
    64. Определение абсолютной сходимости любого числового ряда. Теорема о связи
    абсолютной сходимости и сходимости в обычном смысле.Доказательство.
    65. Знакопеременные ряды. Теорема Лейбница о сходимости таких рядов.
    Доказательство.
    66.Степенные ряды. Вывод формулы для радиуса сходимости степенного ряда
    . Область сходимости и поведение ряда на ее границах.

    Определенный интеграл.
    67. Площадь фигуры под графиком функции. Интегральные суммы. Понятие
    определенного интеграла.
    68. Интегральные суммы Дарбу. Теорема о существовании определенного интеграла.
    Доказательство для непрерывной подынтегральной функции.
    69. Свойства определенного интеграла. Доказательство аддитивности определенного
    интеграла по промежутку интегрирования.
    70. Теорема о среднем значении определенного интеграла от непрерывной
    функции. Доказательство.
    71. Определенный интеграл от непрерывной функции с переменным верхним
    пределом. Теорема о непрерывности. Доказательство.
    72. Определенный интеграл от непрерывной функции с переменным верхним
    пределом. Производная. Доказательство. Вывод формулы Ньютона-Лейбница.
    73. Замена переменной и интегрирование по частям в определенном интеграле. Вывод
    формул.
    74. Несобственные интегралы. Классификация и способы вычисления.

    Дифференциальные уравнения.
    75. Понятия дифференциального уравнения и его решения. Порядок
    дифференциального уравнения. Общее, особое, частное решения.
    76. Задача Коши для дифференциального уравнения первого порядка. Теорема
    существования и единственности. (Формулировка).
    77. Поле направлений. Изоклины. Семейство интегральных кривых уравнения
    первого порядка.
    78. Дифференциальные уравнения с разделяющимися переменными. Построение
    общего решения.
    79. Однородные дифференциальные уравнения. Построение общего решения.
    80. Линейные уравнения и уравнение Бернулли. Построение общего решения.
    81. Уравнения в полных дифференциалах. Построение общего решения.
    82. Понятие о дифференциальных уравнениях высших порядков. Теорема
    существования и единственности решения задачи Коши. (Формулировка).
    83. Линейные дифференциальные уравнения высших порядков. Однородные
    уравнения. Фундаментальная система решений и структура общего решения
    однородного уравнения. Вид общего решения неоднородного уравнения.
    84. Линейные однородные уравнения с постоянными коэффициентами.
    Характеристическое уравнение. Метод Эйлера. Представление общего
    решения.
    85. Вид общего решения линейного однородного дифференциального уравнения
    для вещественных, комплексных и кратных корней характеристического
    уравнения.
    86. Линейные неоднородные дифференциальные уравнения. Метод Лагранжа
    вариации произвольных постоянных.
    87. Метод неопределенных коэффициентов для построения частных решений
    неоднородных уравнений с постоянными коэффициентами и правой частью
    специального вида.
    88. Системы линейных дифференциальных уравнений с постоянными
    коэффициентами. Задача Коши. Теорема существования и единственности
    решения.
    89. Подстановка и матричный методы построения общего решения нормальной
    системы линейных дифференциальных уравнений первого порядка с
    постоянными коэффициентами.
  • Дипломная работа:

    Учет, анализ и аудит дебиторской и кредиторской задолженности организации

    164 страниц(ы) 

    ВВЕДЕНИЕ
    ГЛАВА 1. ТЕОРЕТИЧЕСКИЕ АСПЕКТЫ УЧЕТА ДЕБИТОРСКОЙ
    И КРЕДИТОРСКОЙ ЗАДОЛЖЕННОСТИ
    1.1. Нормативно-правовое регулирование учета дебиторской
    и кредиторской задолженности
    1.2. Понятие и классификация дебиторской и кредиторской задолженности
    1.3. Международные стандарты по учету расчетов с дебиторами
    и кредиторами
    ГЛАВА 2. ОРГАНИЗАЦИЯ БУХГАЛТЕРСКОГО УЧЕТА, АНАЛИЗ
    И АУДИТ ДЕБИТОРСКОЙ И КРЕДИТОРСКОЙ ЗАДОЛЖЕННОСТИ В ООО «ТРАНСТЕХСЕРВИС-11»
    2.1. Экономико-организационная характеристика организации
    2.2. Учет дебиторской и кредиторской задолженности
    2.3. Анализ дебиторской и кредиторской задолженности
    2.4. Аудиторская проверка дебиторской и кредиторской задолженности организации
    ГЛАВА 3. СОВЕРШЕНСТВОВАНИЕ УЧЕТА ДЕБИТОРСКОЙ И КРЕДИТОРСКОЙ ЗАДОЛЖЕННОСТИ В ООО «ТРАНСТЕХСЕРВИС-11»
    3.1. Совершенствование управления кредиторской и дебиторской задолженностью
    3.2. Совершенствование учета кредиторской и дебиторской задолженности
    3.3. Меры по улучшению состояния расчетов с кредиторами и дебиторами
    ЗАКЛЮЧЕНИЕ
    СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
    ПРИЛОЖЕНИЯ
  • Дипломная работа:

    Инновационные подходы в технологии составления итоговых проверочных работ по курсу «окружающий мир» в рамках фгос ноо

    73 страниц(ы) 


    ВВЕДЕНИЕ….
    ГЛАВА I. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ТЕХНОЛОГИИ СОСТАВЛЕНИЯ ИТОГОВЫХ ПРОВЕРОЧНЫХ РАБОТ ПО ОКРУЖАЮЩЕМУ МИРУ ….
    1.1. Современные инновационные технологии в школьном образовании в свете реализации ФГОС НОО….
    1.2.Особенности системы оценивания достижения требований стандарта по курсу «Окружающий мир»….
    1.3.Новая форма итоговой проверочной работы по курсу «Окружающий мир» в рамках ФГОС НОО….
    Выводы по первой главе … …
    ГЛАВА II. ОПЫТНО-ПЕДАГОГИЧЕСКАЯ РАБОТА ПО ОРГАНИЗАЦИИ ИТОГОВЫХ ПРОВЕРОЧНЫХ РАБОТ ПО КУРСУ «ОКРУЖАЮЩИЙ МИР»….
    2.1. Разработка плана демонстрационного варианта итоговой работы по курсу «Окружающий мир» для 4-го класса
    2.2. Организация проведения итоговых проверочных работ…
    2.3. Анализ и оценка результатов проведения опытно-педагогической работы…
    Выводы по второй главе….…
    ЗАКЛЮЧЕНИЕ….
    ЛИТЕРАТУРА …
    ГЛОССАРИЙ ПО КАТЕГОРИАЛЬНОМУ АППАРАТУ.
    ГЛОССАРИЙ ПО ПЕРСОНАЛИЯМ .
  • Дипломная работа:

    Обучающая программа: Photoshop в Web-дизайне

    37 страниц(ы) 


    Введение 3
    1.1 Особенности графики для Web 5
    1.1.1 Размер WEB-страницы 5
    1.1.2 Скорость загрузки 5
    1.1.3 Способы оптимизации 6
    1.2 Интерфейс ImageReady 6
    1.3 Использование инструментов ImageReady 9
    1.3.1 Слои 9
    1.3.2 Эффекты слоев 10
    1.2.3 Сохранение набора эффектов 12
    1.2.4 Текст 13
    1.2.5 Градиентные заливки 15
    1.2.6 Текстуры 17
    1.2.7 Фон web-страницы 18
    1.4 Карты ссылок 23
    1.5 GIF-анимация 26
    1.4.1 Создание кадров 26
    1.4.2 Расчёт промежуточных кадров 26
    1.4.3 Тайминг 27
    1.4.4 Оптимизация анимации 27
    1.4.5 Удаление кадров 29
    1.4.6 Редактирование готовой анимации 29
    1.6 Сохранение 29
    Глава 2. Тестирующая часть 31
    2.1 Тесты по Photoshop в Web-дизайне 31
    Глава 3. Апробация 34
    Глава 4. Характеристика программы 35
    Заключение 36
    Литература 37
  • Реферат:

    Транспортные риски

    27 страниц(ы) 

    Транспортные риски и их страхование 3
    Морские перевозки (страхование каско) 4
    Страхование судов торгового флота. 6
    Морские перевозки (страхование карго) 11
    Институт общей аварии 14
    Воздушные перевозки 16
    Железнодорожные перевозки 18
    Страхование контейнеров 21
    Список использованной литературы 27
  • Дипломная работа:

    Пути обогащения представлений об эмоциях и чувствах посредством музыки у младших школьников

    75 страниц(ы) 

    ВВЕДЕНИЕ
    ГЛАВА 1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ОБОГАЩЕНИЯ ПРЕДСТАВЛЕНИЙ ОБ ЭМОЦИЯХ И ЧУВСТВАХ У МЛАДШИХ ШКОЛЬНИКОВ
    1.1 Эмоции и чувства в структуре личности школьника
    1.2 Урок музыки как форма обогащения представлений об эмоциях и чувствах
    Выводы по 1 главе
    ГЛАВА 2. ЭКСПЕРИМЕНТАЛЬНАЯ РАБОТА ПО ОБОГАЩЕНИЮ ПРЕДСТАВЛЕНИЙ ОБ ЭМОЦИЯХ И ЧУВСТВАХ У МЛАДШИХ ШКОЛЬНИКОВ
    2.1 Содержание, формы и методы обогащения представлений об эмоциях и чувствах
    2.2 Педагогический эксперимент и его результаты
    Выводы по 2 главе
    ЗАКЛЮЧЕНИЕ
    СПИСОК ЛИТЕРАТУРЫ
    ПРИЛОЖЕНИЯ