СтудСфера.Ру - помогаем студентам в учёбе

У нас можно недорого заказать курсовую, контрольную, реферат или диплом

ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 1 Основы гидравлики - Задача/Задачи №33687

«ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 1 Основы гидравлики» - Задача/Задачи

  • 1 страниц(ы)

Содержание

Введение

Выдержка из текста работы

Заключение

Список литературы

Примечания

фото автора

Автор: Pingvin78

Содержание

1.3. Состав продуктов горения 1 кг коксового газа (в кг)) СО2 - 1,45; М2 =8,74; Н2О-1,92. Найти объемный состав продуктов горения.

1.4. Разрежение в осушительной башне сернокислотного завода измеряется U-образным тягомером наполненным серной кислотой плотностью 1800 кг/м3. Показание тягомера 3 см. Каково абсолютное давление в башне, выраженное в Па, если барометрическое давление составляет 750 мм рт. ст.?

1.5. Манометр на трубопроводе, заполненном жидкостью, показывает давление 0,18 кгс/см2. На какую высоту Н над точкой присоединения манометра поднимается в открытом пьезометре жидкость, находящаяся в трубопроводе, если эта жидкость: а) вода, б) четыреххлористый углерод (рис. 1.23)?

1.6. Высота уровня мазута в резервуаре 7,6 м (рис. 1.24). Относительная плотность мазута 0,96. На высоте 800 мм от дна в резервуаре имеется круглый лаз диаметром 760 мм, крышка которого прикрепляется болтами диаметром 10 мм. Принимая для болтов допустимое напряжение на разрыв 700 кгс/см2, определить необходимое число болтов. Определить также давление мазута на дно резервуара.

1.7. На малый поршень диаметром 40 мм ручного гидравли­ческого пресса (рис. 1.25) действует сила 589 Н (60 кгс). Пренебре­гая потерями, определить силу, действующую на прессуемое тело, если диаметр большого поршня 300 мм.

1.8. Динамический коэффициент вязкости жидкости при 50 °С равняется 30 мПа-с. Относительная плотность жидкости 0,9. Определить кинематический коэффициент вязкости.


Введение

1.20. В середине трубопровода с внутренним диаметром 320 мм установлена трубка Пито-Прандтля (рис. 1.4), дифференциальный манометр которой, заполненный водой, показывает разность уровней Н = 5,8 мм. По трубопроводу проходит под атмосфер­ным давлением сухой воздух при 21 °С. Определить массовый расход воздуха.

1.21. Из отверстия диаметром 10 мм в дне открытого бака, в котором поддерживается постоянный уровень жидкости высотой 900 мм, вытекает 750 дм3 жидкости в 1 ч. Определить коэф­фициент расхода. Через сколько времени опорожнится бак, если прекратить подачу в него жидкости? Диаметр бака 800 мм.

1.22. В напорный бак с площадью поперечного сечения 3 м2 притекает вода. В дне бака имеется спускное отверстие. При установившемся течении расход через отверстие равен притоку и уровень воды устанавливается на высоте 1 м. Если прекратить приток воды, уровень ее будет понижаться и через 100 с бак опорожнится. Определить приток воды в бак.

1.23. По горизонтальному трубопроводу с внутренним диаметром 200 мм протекает минеральное масло относительной плотности 0,9. В трубопроводе установлена диафрагма (рис. 1.3) с острыми краями (коэффициент расхода 0,61). Диаметр отверстия диафрагмы 76 мм. Ртутный дифманометр, присоединенный к диафрагме, показывает разность уровней 102 мм. Определить скорость масла в трубопроводе и его расход.

1.24. На трубопроводе диаметром 160x5 мм установлен расходомер «труба Вентури» (рис. 1.26), внутренний диаметр узкой части которой равен 60 мм. По трубопроводу проходит этан под атмосферным давлением при 25 °С. Показание водяного дифманометра трубы Вентури Н = 32 мм. Определить массовый расход этана, проходящего по трубопроводу (в кг/ч), приняв коэффициент расхода 0,97.

1.25. Определить потерю давления на трение при протекании воды по латунной трубе диаметром 19x2 мм, длиной 10 м. Скорость воды 2 м/с. Температура 55 °С. Принять шероховатость трубы ? = 0,005 мм.

1.26. Определить потерю давления на трение в свинцовом змеевике, по которому протекает 60%-ная серная кислота со скоростью 0,7 м/с при средней температуре 55 °С. Принять максимальную шероховатость свинцовых труб по табл.XII. Внутренний диаметр трубы змеевика 50 мм, диаметр витка змеевика 800 мм, число витков 20. Длину змеевика определить приближенно по числу витков и их диаметру.

1.27. По стальному трубопроводу внутренним диаметром 200 мм, длиной 1000 м передается водород в количестве 120 кг/ч. Среднее давление в сети 1530 мм рт. ст. Температура газа 27 0С. Определить потерю давления на трение.

1.28. Найти потерю давления на трение для пара в стальном паропроводе длиной 50 м, диаметром 108X4 мм. Давление пара Рабc = 6 кгс/см2 (~0,6 МПа), скорость пара 25 м/с.

1.29. Как изменится потеря давления на трение в газопроводе, по которому проходит азот, если при постоянном массовом расходе азота: а) увеличить давление (абсолютное) подаваемого азота с 1 до 10 кгс/см2 при неизменной температуре; б) повысить температуру азота от 0 до 80 °С при неизменном давлении.

1.30. По водопроводной трубе проходит 10 м*/ч воды. Сколько воды в 1 ч пропустит труба удвоенного диаметра при той же потере напора на трение? Коэффициент трения считать постоянным. Течение турбулентное.

1.31. По прямому горизонтальному трубопроводу длиной 150м необходимо подавать 10 м*/ч жидкости. Допускаемая потеря напора 10 м. Определить требуемый диаметр трубопровода, принимая коэффициент трения ? = 0,03.

1.32. Как изменится потеря давления на трение, если при неизменном расходе, жидкости уменьшить диаметр трубопровода вдвое? Задачу решить в двух вариантах: а) считая, что оба режима (старый и новый) находятся в области ламинарного течения; б) считая, что оба режима находятся в автомодельной области.

1.33. Жидкость относительной плотности 0,9 поступает самотеком из напорного бака, в котором поддерживается атмосферное давление, в ректификационную колонну (рис. 1.27). Давление в колонке 0,4 кгс/см2 (~40 кПа) по манометру (pизб). На какой высоте х должен находиться уровень жидкости в напорном баке над местом ввода в колонну, чтобы скорость жидкости в трубе была 2 м/с. Напор, теряемый на трение и местные сопротивления, 2,5 м. Применить уравнение Бернулли.


Выдержка из текста работы

1.34. 86% раствор глицерина спускается из напорного бака 1 в аппарат 2 по трубе диаметром 29x2 мм (рис. 1 28). Разность уровней раствора 10 м. Общая длина трубопровода 110 м. Определить расход раствора, если относительная плотность его 1,23, а динамический коэффициент вязкости 97 мПа -с. Местными сопротив­лениями пренебречь. Режим течения принять ламинарным (с последующей проверкой). Уровень раствора в баке считать постоянным.

1.35. 20 т/ч хлорбензола при 45 °С перекачиваются насосом 1 в напорный бак 2 (рис. 1.29). В реакторе над жидкостью поддерживается разрежение 200 мм рт. ст. (26,66 кПа), в напорном баке атмосферное давление. Трубопровод выполнен из стальных труб с незначительной коррозией диаметром 76 х X 4 мм, общей длиной 26,6 м. На трубопроводе установлены 2 крана, диафрагма (d0 = 48 мм) и 5 отводов под углом 90° (R0/d= 3). Хлорбензол перекачивается на высоту Н=15м. Найти мощность, потребляемую насосом, приняв общий к. п. д. насосной установки 0,7.

1.36. Кожухотрубчатый теплообменник (рис. 1.21) состоит из 187 стальных труб с незначительной коррозией (е = 0,2 мм) диаметром 18x2 мм, длиной 1,9 м. Кожух выполнен из трубы 426X12 мм. По межтрубному пространству параллельно осям труб проходит 3000 м3/ч азота (считая при нормальных условиях) под атмосферным давлением при средней температуре -10 °С. Диаметр входного и выходного штуцера 250 мм. Определить гидравлическое сопротивление межтрубного пространства»

1.37. В теплообменнике типа «труба в трубе» (рис. 1.12), состоящем из двух концентрических труб (внутренней диаметром 44,5X3,5 мм и наружной диаметром 89x5 мм), охлаждается от 70 до 30 °С толуол в количестве 1900 кг/ч. Толуол проходит по кольцевому пространству между наружной и внутренней трубой; по внутренней трубе протекает охлаждающая вода, нагревающаяся от 14 до 21 °С. Определить потерю давления на трение на 1 м длины трубы для толуола и для воды, принимая, что стальные трубы имеют незначительную коррозию. Средняя температура стенки внутренней трубы 25 °С.

1.38. Привести формулу (1.39) к критериальному виду.

1.39. Какой должен быть взят геометрический масштаб модели, если в промышленном аппарате рабочая жидкость - нефть, а в модели - вода, кинематический коэффициент вязкости которой в 50 раз меньше, чем у нефти? Какую скорость надо дать воде в модели, если скорость нефти в промышленном аппарате 1 м/с? Моделируются одновременно силы трения и силы тяжести.

1.40. Определить мощность, расходуемую при перекачке насоса 4,6 м3/ч холодильного рассола (25% раствор СаС12) из холодильной установки в конденсатор, расположенный над ректификационной колонной. Высота подъема 16 м, динамический коэффициент вязкости рассола 9,5 мПа-с, плотность 1200 кг/м3, диаметр трубопровода 32x2,5 мм, общая длина 80 м. Стальные трубы имеют незначительную коррозию. На линии установлены 6 отводов под углом 90° (R0/d = 4) и 4 прямоточных вентиля. Общий к. п. д. насоса с электродвигателем 0,5.

1.41. По горизонтальному трубопроводу перекачивается жидкость. Во сколько раз возрастет расход энергии на перекачку, если через трубу будет проходить удвоенное количество жидкости? Коэффициент трения считать постоянным, ?pдоп= 0.


Заключение

1.42. По стальному трубопроводу внутренним диаметром 75 мм требуется перекачивать 25 м3/ч жидкости плотностью 1200 кг/м3, с динамическим коэффициентом вязкости 1,7 мПа-с. Конечная точка трубопровода выше начальной на 24 м. Длина трубопровода 112 м. На нем установлены 2 прямоточных вентиля и 5 прямоугольных отводов с радиусом изгиба 300 мм. Трубы имеют незначительную коррозию. Найти потребляемую мощность, если общий к. п. д. насосной установки 0,6.

1.43. Вода при 10 °С подается из реки насосом в открытый резервуар (рис. 1.30). Верхняя точка на 50 м выше уровня воды в реке. Трубопровод стальной с незначительной коррозией, внутренний диаметр его 80 мм, расчетная длина (собственная длина плюс эквивалентная длина местных сопротивлений) 165 м. Насос подает 575 дм3/мин.

Какова расходуемая насосом мощность, если к. п. д. насосной установки 0,55?

1.44. По прямому воздухопроводу прямоугольного сечения 400x600 мм, сделанному из кровельной стали, надо подавать 14400 кг/ч воздуха при 27 "С и атмосферном давлении. Длина воздухопровода 60 м. Найти требуемую мощность электродвигателя, если его к. п. д. 0,95, а к. п. д. вентилятора 0,4.

1.45. По трубопроводу с внутренним диаметром 100 мм подается диоксид углерода под давлением 2 кгс/см3 (по манометру) при средней температуре 75 °С с массовой скоростью 30 кг/(м2-с). Шероховатость трубы ?= 0,7 мм. Определить гидравлическое сопротивление горизонтального трубопровода при длине его 90 м и при наличии четырех колен под углом 90° и задвижки. Определить также мощность, потребляемую газодувкой для пере­мещения диоксида углерода, если ее к. п. д. составляет 50 %.

1.46. 40%-ный этиловый спирт спускается из бака по трубе диаметром 33,5x2,8 мм. На трубе имеются кран и 2 колена под углом 90°. Общая длина трубопровода 49 м. Определить скорость спирта в трубопроводе (при разности высот 7,2 м). Коэффициент трения принять приближенно равным 0,025. Найдя скорость спирта, проверить значение коэффициента трения. Температура спирта 35 °С.

1.47. По трубопроводу диаметром 26,8x2,5 мм стекает нитробензол с температурой 44 °С. Начальная точка трубопровода выше конечной на 200 мм. Длина горизонтальной части трубопровода 242 м. Учесть только сопротивление трения. Найти массовый расход нитробензола и проверить принятый режим его движения.

1.48. В аппарат, работающий под давлением рабс = 0,2 МПа, надо подавать насосом воду из открытого резервуара по трубопроводу внутренним диаметром 70 мм. Верхняя точка трубопровода выше уровня воды в резервуаре на 5 м. Расчетная длина трубопровода (собственная длина плюс эквивалентная длина местных сопротивлений) 350 м. Коэффициент трения ? = 0,03. Найти зависимость между расходом воды, протекающей по трубопроводу, и потерей давления на преодоление всех сопротивлений трубопровода (найти уравнение характеристики сети).

1.49. Центробежный насос имеет следующую паспортную характеристику:

Расход воды, м3/ч 12 18 24 30

Создаваемый напор; м 38 36 32 26

Сколько воды будет подавать этот на­сос, если поставить его работать на сеть контрольной задачи 1.48? (Найти рабочую точку).

1.50. Вентилятор подает воздух, засасывая его из атмосферы. Подача вентилятора 12 500 м3/ч. Какое массовое количество воздуха подает вентилятор зимой (t = -15 °С) и летом (t = 30 °С)?

1.51. Определить давление, развиваемое вентилятором, который подает воздух из атмосферы при температуре 18 °С в пространство с избыточным давлением 43 мм вод. ст. Потери давления в трубопроводе 275 Па, скорость воздуха в нем 11,5 м/с.

1.52. Какое абсолютное давление (в кгс/см2) должен иметь воздух, подаваемый в монтежю (рис. 1.31) для подъема серной кислоты относительной плотности 1,78 на высоту 21 м? Гидравлическими потерями пренебречь.

1.53. Скорость струи на выходе из диффузора горизонтального водоструйного насоса (см. рис. 2.10) 2,35 м/с. Вода выходит из диффузора под атмосферным давлением. Диаметр выходного отверстия диффузора 62 мм, диаметр отверстия сопла (сечение 1) 30 мм. Пренебрегая потерями, определить теоретическую высоту Н на которую может быть поднята "откачиваемая вода из открытого резервуара.

1.54. Определить гидравлическое сопротивление слоя сухой насадки высотой 3 м, состоящей из керамических колец 15x15x2 мм. Через насадку просасывается воздух при 20 °С и атмосферном давлении со скоростью 0,4 м/с (скорость фиктивная).


Список литературы

Примеры и задачи по курсу процессов и аппаратов химической технологии /Учебное пособие/, К.Ф. Павлов, П.Г. Романков, А.А. Носков, 9-ое изд. перераб. и дополнен. Л. Химия,1987-575с.


Примечания

Все задачи решены (цена за одну задачу)

Тема: «ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 1 Основы гидравлики»
Раздел: Технология
Тип: Задача/Задачи
Страниц: 1
Цена: 100 руб.
Нужна похожая работа?
Закажите авторскую работу по вашему заданию.
  • Цены ниже рыночных
  • Удобный личный кабинет
  • Необходимый уровень антиплагиата
  • Прямое общение с исполнителем вашей работы
  • Бесплатные доработки и консультации
  • Минимальные сроки выполнения

Мы уже помогли 24535 студентам

Средний балл наших работ

  • 4.89 из 5
Узнайте стоимость
написания вашей работы
Похожие материалы
  • ВКР:

    Формирование общеучебных умений и навыков на основе средств и методов информатики

    120 страниц(ы) 

    ВВЕДЕНИЕ 3
    ГЛАВА 1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ФОРМИРОВАНИЯ ОБЩЕУЧЕБНЫХ УМЕНИЙ ШКОЛЬНИКОВ В ПРОЦЕССЕ ОБУЧЕНИЯ ИНФОРМАТИКЕ 9
    1.1. Общеучебные умения: сущность понятия, этапы формирования 9
    1.2. Расширение перечня общеучебных умений учащихся в условиях информатизации общего среднего образования 27
    Выводы по первой главе 51
    ГЛАВА 2. ФОРМИРОВАНИЕ ОБЩЕУЧЕБНЫХ УМЕНИЙ ИСПОЛЬЗОВАНИЯ ИНФОРМАЦИОННЫХ И КОММУНИКАЦИОННЫХ ТЕХНОЛОГИЙ У МЛАДШИХ ШКОЛЬНИКОВ В ПРОЦЕССЕ ОБУЧЕНИЯ ИНФОРМАТИКЕ 52
    2.1. Анализ процесса формирования общеучебных умений использования информационных и коммуникационных технологий в курсе информатики начальной школы 52
    2.2. Программа формирования общеучебных умений использования информационных и коммуникационных технологий для учащихся начальной школы 71
    Выводы по второй главе 90
    Заключение 91
  • Задача/Задачи:

    ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 8 Экстракция

    2 страниц(ы) 

    8.1. Построить треугольную диаграмму равновесия для системы вода - уксусная кислота - этиловый эфир при 25 °С, пользуясь данными табл. 8.4. Сравнить полученную диаграмму с диаграммой X, Y - z, Z. (см. пример 8.8).
    8.2. Определить состав и количество сосуществующих фаз, на которые расслаивается смесь 10 кг воды, 5 кг этилового эфира и 5 кг уксусной кислоты. При удалении какого количества этилового эфира эта смесь перестанет расслаиваться?
    8.3. Уксусная кислота экстрагируется из водного раствора, содержащего ее 15% (масс.) при 25 °С. Масса исходной смеси 1200 кг. Определить состав и количество конечных продуктов после отгонки растворителя, если экстракция производится чистым эфиром в перекрестном токе. Процесс ведется в две ступени при отношении массы растворителя к массе обрабатываемой смеси 1,5.
    8.4. Уксусная кислота экстрагируется в противотоке этиловым эфиром из водного раствора, содержащего 20% (масс.) кислоты. Определить необходимое количество растворителя на 1000 кг/ч исходной смеси и число теоретических ступеней экстрагирования, если экстракт должен содержать 60% (масс.), а рафинат - не более 2% (масс.) кислоты (после отгонки растворителя).
  • Задача/Задачи:

    ЗАДАЧИ ПАВЛОВ РОМАНКОВ РАЗДЕЛ 3 Гидромеханические процессы

    1 страниц(ы) 

    3.1. Найти соотношение диаметров частиц свинцового блеска (р = 7800 кг/м3) и кварца (р = 2600 кг/м3), осаждающихся с одинаковой скоростью: а) в воздухе; б) в воде, считая, что осаждение происходит при Rе < 0,2.
    3.2. С какой скоростью будут осаждаться шарообразные частицы кварца (р = 2600 кг/м3) диаметром 10 мкм; а) в воде при 15 °С; б) в воздухе при 15 и 500 °С?
    3.3. Какой должна быть скорость воздуха в вертикальной трубе пневматической сушилки, чтобы обеспечить перемещение кристаллов плотностью 2000 кг/м3 с наибольшим диаметром 3 мм? Температура воздуха 60°С. Скорость воздуха должна быть на 25% больше скорости витания частиц.
    3.4. Рассчитать скорость восходящего потока воздуха в воздушном сепараторе, необходимую для отделения мелких (d < 1 мм) частиц апатита от более крупных. Температура воздуха 20 °С. Плотность апатита 3230 кг/м3.
    3.5. Каким должно быть расстояние между полками пылевой камеры (см. рис. 3.9), чтобы в ней оседали частицы колчеданной пыли диаметром более 15 мкм? Остальные условия такие же, как в примере 3.6.
  • Задача/Задачи:

    ЗАДАЧИ ПАВЛОВ РОМАНКОВ РАЗДЕЛ 4 Теплопередача

    1 страниц(ы) 

    4.1. Во сколько раз увеличится термическое сопротивление стенки стального змеевика, свернутого из трубы диаметром 38х2,5 мм, если покрыть ее слоем эмали толщиной 0,5 мм? Считать стенку плоской. Коэффициент теплопроводности эмали 1,05 Вт/(м.К).
    4.2. Паропровод длиной 40 м, диаметром 51x2,5 мм покрыт слоем изоляции толщиной 30 мм; температура наружной поверхности изоляции t=45°С, внутренней tг = 175°С. Определить количество теплоты, теряемое паропроводом в 1 ч. Коэффициент теплопроводности изоляции λ = 0,116 Вт/(м-К).
    4.3. Стальная труба диаметром 60x3 мм изолирована слоем пробки толщиной 30 мм и сверху еще слоем совелита (85 % магнезии + 15% асбеста) толщиной 40мм. Температура стенки трубы -110°С, а наружной поверхности изоляции 10 °С. Вычислить часовую потерю холода с 1 м длины трубы.
    4.4. Как изменится потеря холода в условиях предыдущей задачи, если внутренний слой сделать совелитовым (б = 40 мм), а наружный - пробковым (δ = 30 мм)?
    4.5. Найти температуру внутренней поверхности обмуровки аппарата (рис. 4.19), если температура на наружной поверхности ее 35 °С. Толщина обмуровки 260 мм. Термометр, заделанный на глубину 50 мм от наружной поверхности, показывает температуру 70 °С.
    4.6. Вычислить коэффициент теплопроводности для: а) жидкого хлороформа при t = 20 °С; б) сернистого газа при t = 160 °С и абсолютном давлении 1 кгс/сма (~0,1 МПа); в) 25% водного раствора хлористого кальция при t= 30 °С.
    4.7. Необходимо испарять 1600 кг/ч жидкости, кипящей при t= 137°С и поступающей в испаритель при этой температуре. Удельная теплота испарения жидкости r = 377•108 Дж/кг. Температура греющего пара должна быть не ниже 150 °С. Определить расход греющего пара: а) сухого насыщенного, риаб = 4 кгс/сма (~0,4 МПа); б) перегретого до 250 °С, ризб = 4 кгс/см2 (~0,4 МПа); в) перегретого до 250°С, риаб = 3 кгс/смя (~0,3 МПа). Удельная теплоемкость перегретого пара 2,14-103 Дж/(кг-К).
    Изобразить процессы изменения состояния греющего пара на диаграмме Т - S. Конденсат греющего пара отводится при температуре конденсации.
    4.8. До какой температуры будут нагреты глухим паром 2 т раствора хлористого кальция, если расход греющего пара (ра6с = 2 кгс/сма, т. е. ~0,2 МПа) за 2,5 ч составил 200 кг, а расход теплоты на нагрев аппарата и потери теплоты в окружающую среду составляют в среднем 2030 Вт? Начальная температура раствора 10 °С. Удельная теплоемкость раствора 2,5 х 103 Дж/(кг К).
    4.9. Определить количество передаваемой теплоты в противоточном конденсаторе, в котором конденсируется 850 кг/ч пара сероуглерода под атмосферным давлением. Пар сероуглерода поступает в конденсатор с температурой 90 °С. Жидкий сероуглерод выхолит из конденсатора при температуре на в °С ниже температуры конденсации. Удельная теплоемкость пара сероуглерода 0,67.103 Дж/(кг-К).
    4.10. В кожухотрубчатый конденсатор поступает 120 кг/ч сухого насыщенного пара диоксида углерода под давлением Рабе = 60 кгс/см2 (~6,0 МПа). Жидкий диоксид углерода выходит из конденсатора под тем же давлением при температуре конденсации. Принимая разность температур диоксида углерода и воды на выходе воды из конденсатора 5 К, определить необходимый расход воды, если она поступает в конденсатор с температурой 10 °С.
    4.11. Колонна для ректификации жидкого воздуха покрыта слоем тепловой изоляции из шлаковой ваты толщиной 250 мм. Температура жидкости внутри колонны -190 °С, температура воздуха в помещении 20 °С. Какое количество теплоты может проникать из окружающего воздуха в колонну через 1 ма поверхности, если пренебречь термическими сопротивлениями со стороны жидкости, окружающего воздуха и металлической стенки колонны?
    4.12. Как изменится коэффициент теплопередачи в аппарате, если заменить стальные трубы диаметром 38x2,5 мм на медные такого же размера: а) в паровом калорифере для воздуха, в котором aвозд = 41 Вт/(м8.К), агр. пара = 11600 Вт/(м2-К); б) в выпарном аппарате, в котором араств = 2320 Вт/(ма-К), агр. пара = 11600 Вт/(мг-К)? Загрязнений поверхности не учитывать.
  • Задача/Задачи:

    ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 5 Выпаривание

    1 страниц(ы) 

    5.1. Рассчитать удельный расход сухого насыщенного водяного пара при выпаривании воды под атмосферным давлением и под вакуумом (разрежением) 0,8 кгс/см2. Абсолютное давление греющего водяного пара в обоих случаях рабс = 2 кгс/см2. Вода поступает на выпарку: а) при температуре 15 °С; б) подогретой до температуры кипения.
    5.2. Производительность выпарного аппарата по исходному раствору 2650 кг/ч. Концентрация исходного раствора 50 г/л воды. Концентрация выпаренного раствора 295 г на 1 л раствора. Плотность выпаренного раствора 1189 кг/м3. Найти производительность аппарата по выпаренному раствору.
    5.3. Как изменится производительность выпарного аппарата, если на стенках греющих труб отложится слой накипи толщиной 0,5 мм? Коэффициент теплопередачи К для чистых труб равен 1390 Вт/(м2-К). Коэффициент теплопроводности накипи λ = 1,16 Вт/(м.К).
    5.4. Производительность выпарного аппарата, обогреваемого насыщенным водяным паром с избыточным давлением ри;зб = 1,5 кгс/см2, необходимо повысить с 1200 до 1900 кг/ч (по разбавленному раствору). Выпаривание производится под атмосферным давлением, температура кипения раствора в аппарате 105°С, раствор подается на выпарку подогретым до температуры кипения. Определить, какого давления греющий пар надо подавать в аппарат. Тепловые потери не учитывать, коэффициент теплопередачи считать неизменным, так же как и конечную концентрацию раствора.

Не нашли, что искали?

Воспользуйтесь поиском по базе из более чем 40000 работ

Наши услуги
Дипломная на заказ

Дипломная работа

от 8000 руб.

срок: от 6 дней

Курсовая на заказ

Курсовая работа

от 1500 руб.

срок: от 3 дней

Отчет по практике на заказ

Отчет по практике

от 1500 руб.

срок: от 2 дней

Контрольная работа на заказ

Контрольная работа

от 100 руб.

срок: от 1 дня

Реферат на заказ

Реферат

от 700 руб.

срок: от 1 дня

Другие работы автора
  • Курсовая работа:

    Проектирование мясорубки МИМ-105

    45 страниц(ы) 

    Содержание 2
    Введение 3
    1 Анализ современных конструкций по измельчению мяса 4
    1.1 Назначение и классификация 4
    1.2 Современные конструкции мясорубок 5
    Машина МИМ – 105М 11
    2. Описание модернизированной конструкции 20
    2.1 Назначение и область применения 20
    На основании базовой модели машины для измельчения мяса МИМ-105 разработать конструкцию насадки, которая позволит использовать мясорубку как соковыжималку. Область применения: для измельчения мяса, рыбы, получения сока из фруктов и овощей. 20
    2.2 Описание конструкции и принципа действия 20
    2.3 Техническая характеристика 21
    3. Расчеты, подтверждающие работоспособность конструкции 23
    3.1 Технологические расчеты 23
    3.2 Кинематические расчеты 24
    3.3 Расчет потребной мощности 27
    3.4 Расчеты на прочность 29
    3.5 Теплотехнический расчет 33
    4. Мероприятия по охране труда и техники безопасности при обслуживании оборудования 36
    4.1 Условия эксплуатации оборудования и характеристика санитарно-гигиенических условий труда обслуживающего персонала. 36
    4.2 Правила охраны труда при обслуживании проектируемого оборудования. 37
    Заключение 43
    Список использованной литературы 44
  • Курсовая работа:

    Расчет и подбор тестомесильной машины А2-Т2-64

    33 страниц(ы) 

    Введение 4
    Литературный обзор 5
    Часть 1 Описание группы оборудования 5
    1.1 Классификация технологических машин 12
    Часть 2 Описание конкретной группы тестомесителей 16
    2.1 Машина тестосмесительная ТММ-1М 16
    2.3 Тестосмесительная машина Т2-М-63 17
    2.4 Тестомесильная машина А2-ХТМ 18
    2.5 Тестомесильная машина ХПО-3 со стационарной дежой 18
    2.5 Тестомесильная машина Ш2-ХТ2-И 21
    2.6 Тестомесильная машина TT-D50D 23
    Часть 3 Принципа работы тестомесильных машин 25
    3.1 Описание принципа тестомесильной машины А2-Т2-64 25
    3.2 Правила эксплуатации и техники безопасности 26
    3.3 Расчет тестомесильной машины А2-Т2-64 27
    Заключение 29
    Список литературы 32
    Ведомость технического проекта 33
  • Курсовая работа:

    Физическое описание явления фильтрации жидкости

    41 страниц(ы) 

    ВВЕДЕНИЕ 3
    1. УПРУГИЙ РЕЖИМ ФИЛЬТРАЦИИ 4
    1.2 Уравнения безнапорной фильтрации несжимаемой жидкости 8
    2. ОСОБЕНОСТИ ДВИЖЕНИЯ ПОТОКА 13
    2.1 Структура фильтрационного потока 17
    2.2 Установившаяся и неустановившаяся фильтрация 18
    2.3 Определение направленности и скорости потока 20
    2.4 Характеристические функции некоторых основных типов
    плоского потока 22
    2.5. Неустановившийся фильтрационный поток, в котором о
    дна жидкость вытесняет другую 28
    3. ПРОСТЕЙШИЕ ОДНОМЕРНЫЕ ПОТОКИ 31
    ЗАКЛЮЧЕНИЕ 40
    СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 41
  • Курсовая работа:

    Расчет и подбор овощерезательной машины

    24 страниц(ы) 

    Введение 4
    Литературный обзор 5
    Часть 1 Описание группы оборудования 5
    1.1 Классификация технологических машин 6
    Часть 2 Описание конкретной группы овощерезательных машин 9
    2.1 Машина овощерезательная МРО-200 9
    2.2 Машина овощерезательная универсальная МУ-1000 11
    2.3 Овощерезательно-протирочный механизм МОП-II-1 12
    2.4 Сменный механизм МС10-160 овощерезательный 13
    2.5 Овощерезательная машина МРО400-1000 14
    Часть 3 Описание принципа работы 16
    3.1 Описание принципа действия машины МУ-1000 16
    3.2 Правила эксплуатации и техники безопасности 18
    3.3 Расчет овощерезательной машины МУ-1000 19
    Заключение 22
    Список литературы 23
    Ведомость технического проекта 24
  • Курсовая работа:

    Расчет экскаватора планировщика с базовой машиной МАЗ.

    47 страниц(ы) 

    ВВЕДЕНИЕ 4
    1 НАЗНАЧЕНИЕ ЭКСКАВАТОРА ПЛАНИРОВЩИКА 7
    2 КРАТКАЯ ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА 10
    3. ПРИНЦИП ДЕЙСТВИЯ ОДНОКОВШОВОГО ЭКСКАВАТОРА 13
    4. КИНЕМАТИЧЕСКАЯ СХЕМА ЭКСКАВАТОРА- ПЛАНИРОВЩИКА МАЗ - АНТЕЙ EW-25-M 16
    5. ГИДРАВЛИЧЕСКАЯ СИСТЕМА ЭКСКАВАТОРА 19
    5.1. Расчетная часть 22
    6. ТЕХНОЛОГИЧЕСКАЯ СХЕМА РАБОТЫ 35
    7. РАСЧЕТ ПРОИЗВОДИТЕЛЬНОСТИ 37
    8. БЕЗОПАСНОСТЬ ЗЕМЛЯНЫХ РАБОТ 39
    ЗАКЛЮЧЕНИЕ 44
    СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 46
  • Курсовая работа:

    Проектирование тестомесителя ТММ-1М

    39 страниц(ы) 

    Введение 3
    1. Анализ современных машин, аппаратов аналогического назначения и технико-экономическое обоснование темы проекта. 4
    1.1 Назначение и классификация 4
    1.2 Современные конструкции тестомесительных машин 5
    1.3 Технико-экономическое обоснование темы проекта 16
    1.4 Назначение проекта 17
    2. Описание модернизированной конструкции. 18
    2.1 Назначение и область применения 18
    2.2 Описание конструкции и принцип действия 18
    2.3 Техническая характеристика 21
    3. Расчеты, подтверждающие работоспособность конструкции. 22
    3.1 Технологические расчеты 22
    3.2 Кинематический расчет 22
    3.3 Расчет потребной мощности 25
    3.4 Расчеты на прочность. 26
    3.5 Теплотехнический расчет 33
    4. Мероприятия по охране труда и техники безопасности при обслуживании оборудования 35
    Заключение 38
    Список используемой литературы 39
  • Курсовая работа:

    Проектирование овощерезки МУ-1000

    44 страниц(ы) 

    Введение 3
    1 Анализ современных машин и аппаратов аналогического назначения и технико-экономическое обоснование темы проекта 5
    1.1 Назначение овощерезательного оборудования, классификация 5
    1.2 Современные конструкции картофелеочистительных машин 7
    1.3 Технико-экономическое обоснование темы проекта 21
    1.4 Значение проекта 22
    2 Описание модернизированной конструкции. 24
    2.1 Назначение и область применения 24
    2.2 Описание конструкции и принцип действия 25
    2.3 Техническая характеристика. 26
    3 Расчеты, подтверждающие работоспособность конструкции 27
    3.1 Технологические расчеты 27
    3.2 Кинематические расчеты 28
    3.3 Расчет потребной мощности 31
    3.4 Расчеты на прочность. 32
    4 Мероприятия по охране труда и техники безопасности при обслуживании оборудования 41
    Заключение 43
    Список используемой литературы 44
  • Курсовая работа:

    Производство серной кислоты по методу мокрого катализа

    23 страниц(ы) 

    Введение 3
    1. Теоретическая часть 4
    1.1. Актуальность изучаемой проблемы 4
    1.2. Сырье, полуфабрикаты, вспомогательный материалы 6
    1.3. Краткая историческая справка 7
    1.4. Параметры, влияющие на процесс 9
    1.5. Технологическая схема производства 10
    1.6. Основной аппарат технологической схемы (реактор) 12
    2. Технологический расчет 13
    2.1.Материальный баланс 13
    2.2. Технико-экономические показатели 15
    3. Пути снижения себестоимости готового продукта 18
    4. Повышение качества готового продукта 19
    5. Совершенствование процесса 20
    Заключение 22
    Список литературы 23
  • Контрольная работа:

    Составить схему контроля, сигнализации, регис¬трации расхода абсорбента, давления отвода очищенного газа и температуры газовой смеси.

    7 страниц(ы) 

    1. Составить схему контроля, сигнализации, регистрации расхода абсорбента, давления отвода очищенного газа и температуры газовой смеси.
    2. Выбрать из справочника приборы.
    3. Рассчитать среднеквадратичную погрешность контроля.
    4. Определить абсолютную и относительную погрешность на отметке 600куб.м/час; 0,24атм; 24°С.
    5. Составить схему автоматического регулирования расхода газовой смеси.
    6. Выбрать из справочника приборы.
    7. Выбрать тип регулятора, исходя из свойств объекта:
    запаздывание 40 с;
    постоянная времени 193с;
    коэффициент усиления 1,38.
    8. Рассчитать параметры настройки регулятора, если переходный процесс колебательный.
    9. Составить принципиальную электрическую схему дистанционного управления приводом компрессора.
    10. Предусмотреть автоматическую защиту привода от превышения температуры газовой смеси.
    11. Составить спецификацию на приборы и средства автоматизации.
    12. Оформление задания производить на листах А4 условные обозначения приборов выполнить согласно ГОСТ 21.404-85. (данные по приборам https://www.engineer-oht.ru).
  • Дипломная работа:

    Рассчитать и спроектировать адсорбционно-десорбционного цикла диоксида углерода.

    120 страниц(ы) 

    ВВЕДЕНИЕ
    1 АНАЛИТИЧЕСКАЯ ЧАСТЬ
    1.1 Историческая справка о методах получения и использования продукта
    1.2 Выбор и обоснование метода производства
    1.3 Выбор и обоснование проектного метода очистки
    2 РАСЧЕТНО-ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ
    2.1 Описание технологической схемы производства
    2.2 Внесенные изменения по сравнению с аналогом и обоснование изменений вводимых в проект
    2.3 Техническая характеристика сырья, полуфабрикатов и продукта
    2.4 Материальный баланс производства
    3 РАСЧЕТНАЯ ЧАСТЬ
    3.1 Технологический расчет колонн абсорбционно-десорбционного цикла
    3.2. Гидравлический расчет
    3.3 Конструктивный расчет колонны
    3.4 Механический расчет
    3.5 Тепловой баланс
    4 ПАТЕНТНАЯ ЧАСТЬ
    5 ПРОИЗВОДСТВЕННАЯ И ЭКОЛОГИЧЕСКАЯ БЕЗОПАСНОСТЬ
    5.1 Основные физико-химические, токсические, взрыво- и пожароопасные характеристики веществ и материалов, обращающихся в производстве
    5.2 Технологические и технические мероприятия, обеспечивающие безопасность эксплуатации установки
    5.3 Микроклимат рабочей зоны
    5.4 Освещение производственного помещения.
    5.5 Шум и вибрация
    5.6 Защита зданий и сооружений от разрядов атмосферного электричества (молниезащита)
    5.7 Экологическая безопасность производства
    6 СИСТЕМА АВТОМАТИЗИРОВАННОГО УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМ ПРОЦЕССОМ (АСУТП)
    6.1 Анализ технологического процесса с точки зрения автоматизации
    6.2 Схема автоматизированного управления технологическим процессом (АСУТП).
    7 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ПРОЕКТА
    7.1 Общая характеристика предприятия и продукции
    7.2 Производственный план
    7.3 Оценка экономической эффективности
    ЗАКЛЮЧЕНИЕ
    СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ