У нас можно недорого заказать курсовую, контрольную, реферат или диплом

«ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 2 Перемещение жидкостей» - Задача/Задачи
- 1 страниц(ы)
Содержание
Введение
Выдержка из текста работы
Заключение
Список литературы
Примечания

Автор: Pingvin78
Содержание
2.1. Насос перекачивает 30%-ную серную кислоту. Показание манометра на нагнетательном трубопроводе 1,8 кгссм2 (~0,18 МПа), показание вакуумметра (разрежение) на всасывающем трубопроводе перед насосом 29 мм рт. ст. Манометр присоединен на 0,5 м выше вакуумметра. Всасывающий и нагнетательный трубопроводы одинакового диаметра. Какой напор развивает насос
2.2. Насос перекачивает жидкость плотностью 960 кгм3 из резервуара с атмосферным давлением в аппарат, давление в котором составляет риаб = 37 кгссм2, или ~3,7 МПа (см. рис. 2.1). Высота подъема 16 м. Общее сопротивление всасывающей и нагнетательной линий 65,6 м. Определить полный напор, развиваемый насосом.
2.3. Определить к.п.д. насосной установки. Насос подает 380 дм3мин мазута относительной плотности 0,9. Полный напор 30,8 м. Потребляемая двигателем мощность 2,5 кВт.
Введение
2.9. Центробежный насос при перекачке 280 дм3мин воды создает напор Н = 18 м. Пригоден ли этот насос для перекачки жидкости относительной плотности 1,06 в количестве 15 м3ч по трубопроводу диаметром 70 X 2,5 мм из сборника с атмосферным давлением в аппарат с давлением ризб = 0,3 кгссм2 Геометрическая высота подъема 8,5 м. Расчетная длина трубопровода (собственная длина плюс эквивалентная длина местных сопротивлений) 124 м. Коэффициент трения в трубопроводе ?=0,03. Определить также, какой мощности электродвигатель потребуется установить, если к. п. д. насосной установки составляет 0,55.
2.10. Центробежный насос для перекачки воды имеет следующие паспортные данные Q = 56 м3ч, Н = 42 м, N = 10,9 кВт при n = 1140 обмин. Определить 1) к.п.д. насоса, 2) производительность его, развиваемый напор и потребляемую мощность при п = 1450 обмин, считая, что к.п.д. остался неизменным.
2.11. При испытании центробежного насоса получены следующие данные
Q, дм3мин 0 100 200 300 400 500
Н, м 37,2 38,0 37,0 34,5 31,8 28,5
Сколько жидкости будет подавать этот насос по трубопроводу диаметром 76х4 мм, длиной 355 м (собственная длина плюс эквивалентная длина местных сопротивлений) при геометрической высоте подачи 4,8 м Коэффициент трения ? = 0,03; ?pдоп = 0. (Построить характеристики насоса и трубопровода и найти рабочую точку.)
Как изменится производительность насоса, если геометрическая высота подачи будет 19 м
2.12. Определить производительность шестеренчатого насоса (см. рис. 2.9) по следующим данным частота вращения 650 обмин, число зубьев на шестерне 12, ширина зуба 301 мм, площадь сечения зуба, ограниченная внешней окружностью соседней шестерни, 7,85 см2, коэффициент подачи 0,7.
2.13. Требуется выкачивать 215 дм3мин раствора относительной плотности 1,06 из подвального бака водоструйным насосом (см. рис. 2.10). Высота подъема 3,8 м. Давление воды перед насосом ризб = 1,9 кгссм2 (~0,19 МПа). К.п.д. насоса 0,15. Сколько кубометров воды будет расходовать в 1 ч водоструйный насос
Выдержка из текста работы
2.14. Какой мощности электродвигатель необходимо установить к вентилятору производительностью ПО м3мин при полном напоре 834 Па (85 мм вод. ст.) К.п.д. вентилятора 0,47.
2.15. Центробежный вентилятор, делающий 960 обмин, подает 3200 м3ч воздуха, потребляя при этом 0,8 кВт. Давление (избыточное), создаваемое вентилятором, 44 мм вод. ст. Каковы будут у этого вентилятора подача, давление и затрачиваемая мощность при n = 1250 обмин Определить также к.п.д. вентилятора.
2.16. Какое количество воздуха будет подавать вентилятор примера 2.12 при работе на сеть, у которой при расходе 1000 м3ч сумма (?pск + ?pтр + ?pм. с) составляет 265 Па, а разность давлений в пространстве нагнетания и в пространстве всасывания равняется 20 мм вод. ст.
2.17. Сколько воздуха будет подавать вентилятор примера 2.12 в сеть, у которой при расходе 1350 м3ч сумма (?pск + ?pтр + ?pм. с) составляет 167 Па, а Ардоп равно 128 Па
2.18. Какую частоту вращения надо дать вентилятору примера 2.12, если он должен подавать 1500 м3ч воздуха в сеть, полное сопротивление которой при этом расходе 422 Па
2.19. Определить аналитическим путем и по диаграмме Т-S температуру воздуха после адиабатического сжатия его от начального давления (абсолютного) 1 кгссм2 до конечного давления 3,5 кгссм2. Начальная температура 0°С. Определить также затрату работы на сжатие 1 кг воздуха.
Заключение
2.20. Определить мощность, потребляемую углекислотным поршневым 'компрессором производительностью 5,6 м3ч (при условиях всасывания). Компрессор сжимает диоксид углерода от 20 до 70 кгссм2 (давление абсолютное). Начальная температура -15 °С. К. п. д. компрессора принять равным 0,65. Задачу решить как аналитическим путем, так и с помощью диаграммы Т-S для углерода (рис. XXVII).
2.21. Определить объемный к.п.д. компрессора предыдущей задачи, если вредное пространство составляет 6% от объема, описываемого поршнем, а показатель политропы расширения n = 1,2.
2.22. Определить производительность и расходуемую мощность для одноступенчатого поршневого компрессора по следующим данным диаметр поршня 250 мм, ход поршня 275 мм, объем вредного пространства 5,4% от объема, описываемого поршнем, частота вращения 300 обмин. Компрессор сжимает атмосферный воздух до pабс = 4 кгссм2. Показатель политропы расширения на 10% меньше показателя адиабаты. Начальная температура воздуха 25 °С. Общий к.п.д. компрессора 0,72.
2.23. Как изменяется производительность и потребляемая мощность компрессора предыдущей задачи, если дать ему воздуходувкой наддув до рнзб = 0,4 кгссм2 (см. рис. 2.13). Конечное давление (абсолютное) 4 кгссм2.
2.24. При каком давлении нагнетания объемный к.п.д. одноступенчатого поршневого компрессора, сжимающего этилен, упадет до 0,2 Давление всасывания 1 кгссм2. Расширение газа из вредного пространства считать адиабатическим. Объем вредного пространства составляет 7% от объема, описываемого поршнем.
2.25. Исходя из условия, что компрессорное смазочное масло допускает без заметного ухудшения смазки температуру в цилиндре не выше 160 °С, определить предельное значение давления нагнетания в одноступенчатом поршневом компрессоре а) для воздуха, б) для этана. Давление всасывания 1 кгссм2. Начальная температура 25 °С. Процесс сжатия считать адиабатическим.
2.26.По данным примера 2.17 определить для одноступенчатого и двухступенчатого компрессоров теоретическую затрату работы по формулам (2.13) и (2.19).
2.27. Определить требуемое число ступеней поршневого компрессора, который должен сжимать азот от 1 до 100 кгссм2 (давление абсолютное), если допускаемая температура в конце сжатия не должна превышать 140°С. Процесс сжатия считать адиабатическим. Начальная температура азота 20 °С.
2.28. Определить теоретическую затрату работы на сжатие водорода от 1,5 до 17 кгссм2 (давление абсолютное) при одноступенчатом и двухступенчатом сжатии. Начальная температура водорода 20 °С.
2.29. Компрессор при испытании нагнетал атмосферный воздух в баллон объемом 42,4 дм3. За 10,5 мин давление в баллоне повысилось от 0 до 52 кгссм2 (давление избыточное), а температура воздуха в баллоне поднялась от 17 до 37 °С. Определить производительность компрессора в м3ч (при нормальных условиях).
2.30. Определить потребляемую мощность и расход воды на холодильники поршневого компрессора, который сжимает 625 м3ч (при нормальных условиях) этилена от давления (абсолютного) 9,81-104 до 176,6-104 Па. К. п. д. компрессора 0,75. Охлаждающая вода нагревается в холодильниках на 13 °С. Начальная температура газа 20 °С.
Список литературы
Примеры и задачи по курсу процессов и аппаратов химической технологии /Учебное пособие/, К.Ф. Павлов, П.Г. Романков, А.А. Носков, 9-ое изд. перераб. и дополнен. Л. Химия,1987-575с.
Примечания
Все задачи решены (цена за одну задачу)
Тема: | «ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 2 Перемещение жидкостей» | |
Раздел: | Технология | |
Тип: | Задача/Задачи | |
Страниц: | 1 | |
Цена: | 120 руб. |
Закажите авторскую работу по вашему заданию.
- Цены ниже рыночных
- Удобный личный кабинет
- Необходимый уровень антиплагиата
- Прямое общение с исполнителем вашей работы
- Бесплатные доработки и консультации
- Минимальные сроки выполнения
Мы уже помогли 24535 студентам
Средний балл наших работ
- 4.89 из 5
написания вашей работы
-
Задача/Задачи:
ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 7 Ректификация
2 страниц(ы)
7.1. Крезол (СН3С6Н4ОН) перегоняется с водяным паром а) под атмосферным давлением, б) под давлением 300 мм рт. ст. Определить: температуру перегонки; массовый состав получаемой смеси; объемный процент крезола в паре и его парциальное давление. Принять φ = 0,8. Давление насыщенного пара крезола - см. рис. XIV (м-крезол).7.2. Глицерин очищается перегонкой с перегретым водяным паром при 230 °С под вакуумом 590 мм рт. ст. Степень насыщения водяного пара глицерином 0,75. Определить расход пара, уходящего с 1 т глицерина. Сырой глицерин подается при температуре перегонки. Аппарат имеет внешний обогрев. Как изменится состав паровой смеси, если повысить вакуум до 620 мм рт. ст.? Температура кипения чистого глицерина под давлением 760 мм рт. ст. равняется 290 °С, а под давлением 50 мм рт. ст. 205 °С. Воспользоваться правилом линейности, взяв в качестве стандартной жидкости воду (табл. XXXVIII).РазвернутьСвернуть
7.3. Смесь бензола и толуола кипит при 95 °С под давлением 760 мм рт. ст. При 95 °С давление насыщенного пара бензола Р6 = = 1167 мм рт. ст.; давление насыщенного пара толуола Рт = 480 мм рт. ст. Найти состав кипящей жидкости, считая, что смесь характеризуется законом Рауля.
Если жидкость будет содержать в два раза меньше толуола, то под каким давлением она будет кипеть при той же температуре?
7.4. Определить равновесные составы жидкости и пара для смеси метиловый спирт - вода при температуре 50 °С: а) под давлением 300 мм рт. ст., б) под давлением 500 мм рт. ст., считая, что смесь характеризуется законом Рауля.
Объяснить полученный для случая б) результат.
7.5. Построить кривую равновесия х-у* при общем давлении 2 кгс/см2 для смеси гексан-гептан, считая приложимым закон Рауля. Давления насыщенных паров чистых компонентов взять по номограмме (рис. XIV).
-
Задача/Задачи:
ЗАДАЧИ ПАВЛОВ РОМАНКОВ РАЗДЕЛ 3 Гидромеханические процессы
1 страниц(ы)
3.1. Найти соотношение диаметров частиц свинцового блеска (р = 7800 кг/м3) и кварца (р = 2600 кг/м3), осаждающихся с одинаковой скоростью: а) в воздухе; б) в воде, считая, что осаждение происходит при Rе < 0,2.3.2. С какой скоростью будут осаждаться шарообразные частицы кварца (р = 2600 кг/м3) диаметром 10 мкм; а) в воде при 15 °С; б) в воздухе при 15 и 500 °С?РазвернутьСвернуть
3.3. Какой должна быть скорость воздуха в вертикальной трубе пневматической сушилки, чтобы обеспечить перемещение кристаллов плотностью 2000 кг/м3 с наибольшим диаметром 3 мм? Температура воздуха 60°С. Скорость воздуха должна быть на 25% больше скорости витания частиц.
3.4. Рассчитать скорость восходящего потока воздуха в воздушном сепараторе, необходимую для отделения мелких (d < 1 мм) частиц апатита от более крупных. Температура воздуха 20 °С. Плотность апатита 3230 кг/м3.
3.5. Каким должно быть расстояние между полками пылевой камеры (см. рис. 3.9), чтобы в ней оседали частицы колчеданной пыли диаметром более 15 мкм? Остальные условия такие же, как в примере 3.6.
-
Задача/Задачи:
ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 6 Абсорбция
2 страниц(ы)
6.1. Смешаны два равных объема бензола и нитробензола. Считая, что объем жидкой смеси равен сумме объемов компонентов, определить плотность смеси, относительную массовую концентрацию X нитробензола и его объемную мольную концентрацию Сх.6.2. Состав жидкой смеси: хлороформа 20%, ацетона 40%, сероуглерода 40%. Проценты мольные. Определить плотность смеси, считая, что изменения объема при смешении не происходит.РазвернутьСвернуть
6.3. Воздух насыщен паром этилового спирта. Общее давление воздушно-паровой смеси 600 мм рт. ст., температура 60 °С. Принимая оба компонента смеси за идеальные газы, определить относительную массовую концентрацию V этилового спирта в смеси и плотность смеси.
6.4. Газ состава: водород 26%, метан 60%, этилен 14% (проценты мольные) имеет давление ра6с = 30 кгс/см2 и температуру 20 °С. Считая компоненты смеси идеальными газами, определить их объемные массовые концентрации Сy (в кг/м3).
6.5. Показать, что в формуле
при любых значениях Мв и МА у не может быть отрицательным.
6.6. В условиях примера 6.3 (а) определить движущую силу процесса массоперехода в начальный момент времени по газовой и по жидкой фазе в объемных концентрациях, мольных и массовых.
6.7. Пар бинарной смеси хлороформ - бензол, содержащий 50% хлороформа и 50% бензола, вступает в контакт с жидкостью, содержащей 44% хлороформа и 56% бензола (проценты мольные). Давление атмосферное. Определить: а) из какой фазы в какую будут переходить хлороформ и бензол; б) движущую силу процесса массопередачи по паровой и по жидкой фазе на входе пара в жидкость (в мол. долях). Данные о равновесных составах см. в табл. ХLVII.
-
Задача/Задачи:
ЗАДАЧИ ПАВЛОВ РОМАНКОВ РАЗДЕЛ 4 Теплопередача
1 страниц(ы)
4.1. Во сколько раз увеличится термическое сопротивление стенки стального змеевика, свернутого из трубы диаметром 38х2,5 мм, если покрыть ее слоем эмали толщиной 0,5 мм? Считать стенку плоской. Коэффициент теплопроводности эмали 1,05 Вт/(м.К).4.2. Паропровод длиной 40 м, диаметром 51x2,5 мм покрыт слоем изоляции толщиной 30 мм; температура наружной поверхности изоляции t=45°С, внутренней tг = 175°С. Определить количество теплоты, теряемое паропроводом в 1 ч. Коэффициент теплопроводности изоляции λ = 0,116 Вт/(м-К).РазвернутьСвернуть
4.3. Стальная труба диаметром 60x3 мм изолирована слоем пробки толщиной 30 мм и сверху еще слоем совелита (85 % магнезии + 15% асбеста) толщиной 40мм. Температура стенки трубы -110°С, а наружной поверхности изоляции 10 °С. Вычислить часовую потерю холода с 1 м длины трубы.
4.4. Как изменится потеря холода в условиях предыдущей задачи, если внутренний слой сделать совелитовым (б = 40 мм), а наружный - пробковым (δ = 30 мм)?
4.5. Найти температуру внутренней поверхности обмуровки аппарата (рис. 4.19), если температура на наружной поверхности ее 35 °С. Толщина обмуровки 260 мм. Термометр, заделанный на глубину 50 мм от наружной поверхности, показывает температуру 70 °С.
4.6. Вычислить коэффициент теплопроводности для: а) жидкого хлороформа при t = 20 °С; б) сернистого газа при t = 160 °С и абсолютном давлении 1 кгс/сма (~0,1 МПа); в) 25% водного раствора хлористого кальция при t= 30 °С.
4.7. Необходимо испарять 1600 кг/ч жидкости, кипящей при t= 137°С и поступающей в испаритель при этой температуре. Удельная теплота испарения жидкости r = 377•108 Дж/кг. Температура греющего пара должна быть не ниже 150 °С. Определить расход греющего пара: а) сухого насыщенного, риаб = 4 кгс/сма (~0,4 МПа); б) перегретого до 250 °С, ризб = 4 кгс/см2 (~0,4 МПа); в) перегретого до 250°С, риаб = 3 кгс/смя (~0,3 МПа). Удельная теплоемкость перегретого пара 2,14-103 Дж/(кг-К).
Изобразить процессы изменения состояния греющего пара на диаграмме Т - S. Конденсат греющего пара отводится при температуре конденсации.
4.8. До какой температуры будут нагреты глухим паром 2 т раствора хлористого кальция, если расход греющего пара (ра6с = 2 кгс/сма, т. е. ~0,2 МПа) за 2,5 ч составил 200 кг, а расход теплоты на нагрев аппарата и потери теплоты в окружающую среду составляют в среднем 2030 Вт? Начальная температура раствора 10 °С. Удельная теплоемкость раствора 2,5 х 103 Дж/(кг К).
4.9. Определить количество передаваемой теплоты в противоточном конденсаторе, в котором конденсируется 850 кг/ч пара сероуглерода под атмосферным давлением. Пар сероуглерода поступает в конденсатор с температурой 90 °С. Жидкий сероуглерод выхолит из конденсатора при температуре на в °С ниже температуры конденсации. Удельная теплоемкость пара сероуглерода 0,67.103 Дж/(кг-К).
4.10. В кожухотрубчатый конденсатор поступает 120 кг/ч сухого насыщенного пара диоксида углерода под давлением Рабе = 60 кгс/см2 (~6,0 МПа). Жидкий диоксид углерода выходит из конденсатора под тем же давлением при температуре конденсации. Принимая разность температур диоксида углерода и воды на выходе воды из конденсатора 5 К, определить необходимый расход воды, если она поступает в конденсатор с температурой 10 °С.
4.11. Колонна для ректификации жидкого воздуха покрыта слоем тепловой изоляции из шлаковой ваты толщиной 250 мм. Температура жидкости внутри колонны -190 °С, температура воздуха в помещении 20 °С. Какое количество теплоты может проникать из окружающего воздуха в колонну через 1 ма поверхности, если пренебречь термическими сопротивлениями со стороны жидкости, окружающего воздуха и металлической стенки колонны?
4.12. Как изменится коэффициент теплопередачи в аппарате, если заменить стальные трубы диаметром 38x2,5 мм на медные такого же размера: а) в паровом калорифере для воздуха, в котором aвозд = 41 Вт/(м8.К), агр. пара = 11600 Вт/(м2-К); б) в выпарном аппарате, в котором араств = 2320 Вт/(ма-К), агр. пара = 11600 Вт/(мг-К)? Загрязнений поверхности не учитывать.
-
Задача/Задачи:
Павлов Романков раздел 11 Глубокое охлаждение
2 страниц(ы)
11.1. Вычислить холодильный коэффициент и мощность, потребляемую холодильной установкой, работающей по циклу Карно, если ее холодопроизводительность 6400 Вт при температуре испарения -10°С. Температура конденсации 22 °С.11.2. Найти минимальную затрату работы (по циклу Карно) и расход воды в конденсаторе при выработке 100 кг/ч льда из воды, имеющей температуру 0 °С. Хладагент испаряется при -5°С, а конденсируется при 25°С. Вода в конденсатор подается при 12 СС, а уходит при 20 СС. Удельная теплота замерзания воды 335 кДж/кг.РазвернутьСвернуть
11.3. Определить удельную холодопроизводительность хладагента и холодильный коэффициент цикла для: а) аммиака; б) диоксида углерода и в) дифтордихлорметана СF2Сl2. Температура испарения - 15 0С, температура конденсации 300С. Цикл сухой, переохлаждение жидкости перед дросселированием отсутствует.
11.4. Вычислить теоретический холодильный коэффициент углекислотной холодильной установки, если температура конденсации 20°С, а температура испарения -40°С. Цикл сухой, переохлаждение жидкости перед дросселированием отсутствует.
11.5. Сравнить теоретические холодильные коэффициенты аммиачной компрессионной холодильной установки, работающей при температуре испарения -20 °С и температуре конденсации 30 °С: а) для цикла Карно; б) для реального влажного цикла; в) для сухого цикла без переохлаждения жидкого аммиака; г) для сухого цикла с переохлаждением до 25 СС жидкого аммиака после конденсации.
11.6. По условиям предыдущей задачи сравнить теоретические холодильные коэффициенты для фреоновой холодильной установки, пользуясь диаграммой i - lg р (рис. XXVIII).
Задача 11.7 В конденсаторе аммиачной холодильной установки 20 м3/ч воды нагревается на 6 К. Теоретическая мощность, затрачиваемая компрессором, 23,5 кВт. Определить холодопроизводительность установки и холодильный коэффициент.
Не нашли, что искали?
Воспользуйтесь поиском по базе из более чем 40000 работ
Предыдущая работа
ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 1 Основы гидравликиСледующая работа
ЗАДАЧИ ПАВЛОВ РОМАНКОВ РАЗДЕЛ 3 Гидромеханические процессы




-
Дипломная работа:
112 страниц(ы)
ВВЕДЕНИЕ 3
1 ОБЗОР СОВРЕМЕННЫХ СИСТЕМ БЕСПРОВОДНОГО АБОНЕНТСКОГО ДОСТУПА 7
1.1Сравнение ключевых технологий WiMAX и HSPA 101.2 Сравнение ключевых технологий WiMAX и LTE 11РазвернутьСвернуть
1.3 Сравнение ключевых технологий WiMAX и Wi-Fi 15
2. ШИРОРОКОПОЛОСНЫЙ МОБИЛЬНЫЙ ДОСТУП ПОД УПРАВЛЕНИЕМ СТАНДАРТА IEEE 802.16e 18
2.1 Стандарт 802.16: стек протоколов 18
2.2 Стандарт 802.16: физический уровень 19
2.3 Стандарт 802.16 протокол подуровня МАС 22
2.4 Стандарт 802.16: структура кадра 24
3. ОСОБЕННОСТИ ПРИМЕНЕНИЯ МОДЕМОВ OFDM И МНОГОСТАНЦИОННОГО ДОСТУПА OFDMA 27
3.1 Особенности применения модемов OFDM. 27
3.2 MESH-сеть 36
3.3 Особенности применения многостанционного доступа OFDMA 48
4. УСЛУГИ И АРХИТЕКТУРА СЕТЕЙ Mobile WiMAX 52
4.1 Услуги сетей технологии Mobile WiMAX. 52
4.2 Принципы построения сетей WiMAX 53
4.3 Решения WiMAX с усовершенствованными функциями и рабочими характеристиками. 59
5. РАЗРАБОТКА СЕТИ WiMAX ДЛЯ РЕАЛИЗАЦИИ УСЛУГИ ШИРОКОПОЛОСНОГО ДОСТУПА В ИНТЕРНЕТ. 65
5.1 Выбор характеристик радиоинтерфейса 65
5.2 Расчет частотных каналов 67
5.3. Определения размерности кластера 67
5.4 Расчет частотных каналов, которые используются для обслуживания абонентов БС 71
5.5 Расчет допустимой нагрузки БС 71
5.6 Расчет числа абонентов, обслуживающихся одной БС 72
5.7 Расчет количества БС 72
5.8 Расчет радиуса зоны обслуживания БС 73
6. ПРОВЕРОЧНЫЙ РАСЧЕТ ПОМЕХОУСТОЙЧИВОСТИ ДЛЯ ОБЕСПЕЧЕНИЯ РАБОТЫ СЕТИ 74
6.1 Расчет величины защитного расстояния 74
6.2 Расчет уровня сигнала на входе приемника 74
6.3 Расчет вероятности ошибки 75
6.4 Расчет эффективности использования радиоспектра 75
7. ВЫБОР ОБОРУДОВАНИЯ БАЗОВЫХ АБОНЕНТСКИХ СТАНЦИЙ 77
7.1 Выбор оборудования абонентских станций 77
7.2 Выбор оборудования базовых станций 79
8 БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ ПРИ РАЗВЕРТЫВАНИИ СЕТИ 83
8.1 Особенности географического положения Егорьевского района Московской области 83
8.2 Воздействие радиочастотного поля на организм человека 83
9 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ЦЕЛЕСООБРАЗНОСТИ РАЗРАБОТКИ ИНФОРМАЦИОННОЙ СЕТИ НА ОСНОВЕ ТЕХНОЛОГИИ Mobile WiMAX 88
9.1. Расчет себестоимости разработки 94
9.2. Оценка экономической эффективности внедрения проектируемой информационной сети 97
ЗАКЛЮЧЕНИЕ 108
СПИСОК ИСПЛЬЗОВАННЫХ ИСТОЧНИКОВ 111
-
Дипломная работа:
91 страниц(ы)
ВВЕДЕНИЕ
1. БАЗОВАЯ ИНФОРМАЦИЯ ДЕТАЛИ «КОРПУС» 4
2. ПРОЕКТИРОВАНИЕ И ПРОИЗВОДСТВО ЗАГОТОВОК 5
2.1 Выбор метода получения заготовки 52.2 Расчет припусков и определение исполнительных размеров заготовки 7РазвернутьСвернуть
2.3 Технико-экономическое обоснование методов получения заготовки 11
3. ТЕХНОЛОГИЧЕСКИЙ РАЗДЕЛ 14
3.1 Анализ технических требований на объект производства 14
3.2 Анализ технологичности конструкции детали 17
3.3 Определения типа производства 18
3.4 Анализ и выбор комплектов технологических баз 19
3.5 Разработка технологического процесса механической обработки 20
3.6 Разработка технологической операции и фрагмента
управляющей программы 27
3.7 Расчет режимов резания 29
3.8 Расчет норм времени 43
4. КОНСТРУКТОРСКИЙ РАЗДЕЛ 45
4.1 Разработка конструкции станочного приспособления 45
4.2 Расчет конструкции станочного приспособления 45
5. БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ 48
5.1 Анализ возможных опасных, вредных факторов и ЧС при
работе на участке 48
5.2 Разработка мероприятий по снижению опасных и вредных
факторов при работе на участке 50
5.3 Разработка мероприятий по снижению вредного воздействия
техпроцесса на участке на природу 54
6. ОРГАНИЗАЦИОННО-ЭКОНОМИЧЕСКИЙ РАЗДЕЛ 55
ЗАКЛЮЧЕНИЕ 58
6.1 Организация производственного процесса 58
6.2 Расчет себестоимости и определение цены продукции 66
6.3 Расчет технико-экономических показателей участка 86
ЗАКЛЮЧЕНИЕ 89
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 90
-
Курсовая работа:
Цех переработки резиновых рукавов бездорным способом
60 страниц(ы)
ВВЕДЕНИЕ
1 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ МЕТОДА ПРОИЗВОДСТВА
1.1 Технико-экономическое сравнение существующих методов производства изделия1.2 Выбор района и площади для строительстваРазвернутьСвернуть
2 ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ
2.1 Теоретические основы проектируемого производства
2.1.1 Химические и физико-химические основы производства
2.1.2 Математическое моделирование процесса
2.2 Характеристика исходного сырья и готовой продукции
2.2.1 Характеристика исходного сырья
2.2.2 Характеристика готовой продукции
2.3 Описание технологической схемы производства
2.4 Материальный расчет производства
2.5 Расчет количества оборудования
2.5.1 Механический расчет
2.5.2 Тепловой расчет
3. ВЫВОДЫ ПО ПРОЕКТУ
4. СТАНДАРТИЗАЦИЯ
ЗАКЛЮЧЕНИЕ 33
СПИСОК ИСПОЛЬЗОВАНЫХ ИСТОЧНИКОВ 34
7. СТАНДАРТИЗАЦИЯ
ЗАКЛЮЧЕНИЕ 33
СПИСОК ИСПОЛЬЗОВАНЫХ ИСТОЧНИКОВ 34
-
Дипломная работа:
150 страниц(ы)
Введение
1. Патентный поиск …. 8
2. Технико-экономическое обоснование выбранного метода производства. Выборместа строительства….…11РазвернутьСвернуть
3. Технологическая часть….… 15
3.1. Физико-химические константы и свойства основного продукта….….…. 15
3.2. Техническая характеристика оксида этилена и вспомогательных
материалов. Области применения….…. 16
3.3. Химизм процесса по стадиям, физико – химические основы процесса…. 17
3.4. Новые инженерные решения ….…. 18
3.5. Описание технологической схемы производства….…. 19
3.6. Рабочие технологические параметры …. 22
3.7. Описание работы основного аппарата….…. 23
3.8. Рекомендации по осуществлению аналитического контроля производства…. 24
3.9. Материальный баланс производства…. 25
3.10. Технико-технологические расчеты….… 40
3.10.1. Расчет основного оборудования…. 40
3.10.2. Расчет вспомогательного оборудования… 86
4. Автоматизация и автоматические системы управления технологическим
процессом…. 95
4.1. Цели и назначение системы управления… 95
4.2. Анализ свойств объектов регулирования ….…. 95
4.3. Обоснование средств контроля и управления… 96
4.4. Автоматический и аналитический контроль качества продукции…. 96
4.5. Контроль выбросов в водный и воздушный бассейн….….… 97
4.6. Автоматический контроль производства… 97
5. Строительно-монтажная часть… 97
6. Безопасность жизнедеятельности…. 114
6.1. Общая характеристика объекта….… 115
6.2. Опасные и вредные факторы присущие объекту…. 115
6.3. Категорирование объекта по взрывопожарной опасности…. 118
6.4. Санитарная характеристика…. 118
6.5. Безопасность технологического процесса….….…. 118
6.6. Средства индивидуальной защиты….…. 119
6.7. Микроклимат операторной….…. 119
6.8. Вентиляция….…. 120
6.9. Освещение….….….…. 121
6.10. Шум и вибрация….…. 121
6.11. Электробезопасность….…. 122
6.12. Статическое электричество…. 123
6.13 Молниезащита….….…. 123
6.14. Пожарная профилактика и средства пожаротушения….….… 124
6.15. Экологичность…. 125
7. Экономическое обоснование проекта….…. 126
7.1. Сводный товарный баланс…. 126
7.2. Расчет капитальных вложений….…. 127
7.3. Расчет численности и фонда заработной платы персонала….….…. 129
7.4. Калькуляция себестоимости продукции….…. 132
7.5. Технико- экономические показатели процесса…. 134
Заключение….…. 135
Список используемых источников ….…. 136
Стандартизация….….…. 137
Перечень выполненных чертежей….…. 138
Спецификация…. 139
-
Курсовая работа:
Производство таблеток глюконата кальция
52 страниц(ы)
Реферат
Перечень сокращений, условных обозначений, символов, единиц и терминов
Введение
1. Аналитическая часть1.1 Историческая справка о методах получения и использования продуктаРазвернутьСвернуть
1.2 Выбор и обоснование метода производства, химизм процесса
2. Расчетно-технологическая часть
2.1 Описание технологической схемы производства
2.2 Внесенные изменения по сравнению с аналогом и обоснование изменений, вносимых в проект
2.3 Техническая характеристика сырья, полуфабрикатов и продукта
2.4 Материальный баланс производства
2.5 Выбор и технологический расчет основного и вспомогательного оборудования
2.6 Механический расчет
2.7 Производственная и экологическая безопасность
Заключение
Список литературы
Приложения
-
Курсовая работа:
Расчет и подбор котла пищеварочного
26 страниц(ы)
Введение… 5
Литературный обзор… 6
Часть 1 Описание группы оборудования…. 6
Часть 2 Описание конкретной группы оборудования для варки… 112.1 Котел КПЭ-60…. 12РазвернутьСвернуть
2.2 Котел КПЭСМ-60…. 14
2.3 Котел КПЭ-100Г…. 15
Часть 3 Описание принципа работы…. 17
3.1 Описание принципа работы электрического пищевого котла…. 17
3.2 Правила эксплуатации и техники безопасности… 19
3.3 Расчет электрического котла КПЭ-250… 22
Заключение… 26
Список литературы…. 27
Ведомость технического проекта…. 28
-
Курсовая работа:
Регулирование противоточных барабанных сушилок
13 страниц(ы)
1. Описание технологического процесса
2. Сделать чертёж по ГОСТу – Функциональная схема автоматизации,
3. Функциональная схема автоматизации, выполненная развёрнутым способом по ГОСТу.4. Спецификация на приборы и средства автоматизацииРазвернутьСвернуть
5. Схема привязки КТС (комплекс технических средств к объекту)
Описание схем регулирования
Список использованных источников -
Курсовая работа:
Проектирование картофелеочистительной машины МОК-125
39 страниц(ы)
Введение 3
1 Анализ современных машин и аппаратов аналогического назначения и технико-экономическое обоснование темы проекта 41.1 Назначение картофелеочистительного оборудования, классификация 4РазвернутьСвернуть
1.2 Современные конструкции картофелеочистительных машин 8
1.3 Технико-экономическое обоснование темы проекта 15
1.4 Значение проекта 15
2 Описание модернизированной конструкции. 17
2.1 Назначение и область применения 17
2.2 Описание конструкции и принцип действия 17
2.3 Техническая характеристика. 20
3 Расчеты, подтверждающие работоспособность конструкции 22
3.1 Технологические расчеты 22
3.2 Кинематические расчеты 23
3.3 Расчет потребной мощности 25
3.4 Расчеты на прочность. 26
4 Мероприятия по охране труда и техники безопасности при обслуживании оборудования 35
Заключение 38
Список используемой литературы 39
-
Курсовая работа:
Расчет и подбор тестомесильной машины А2-Т2-64
33 страниц(ы)
Введение 4
Литературный обзор 5
Часть 1 Описание группы оборудования 5
1.1 Классификация технологических машин 12Часть 2 Описание конкретной группы тестомесителей 16РазвернутьСвернуть
2.1 Машина тестосмесительная ТММ-1М 16
2.3 Тестосмесительная машина Т2-М-63 17
2.4 Тестомесильная машина А2-ХТМ 18
2.5 Тестомесильная машина ХПО-3 со стационарной дежой 18
2.5 Тестомесильная машина Ш2-ХТ2-И 21
2.6 Тестомесильная машина TT-D50D 23
Часть 3 Принципа работы тестомесильных машин 25
3.1 Описание принципа тестомесильной машины А2-Т2-64 25
3.2 Правила эксплуатации и техники безопасности 26
3.3 Расчет тестомесильной машины А2-Т2-64 27
Заключение 29
Список литературы 32
Ведомость технического проекта 33