У нас можно недорого заказать курсовую, контрольную, реферат или диплом

«Регенерация кислотных смесей и концентрирования слабой азотной кислоты» - Курсовая работа
- 78 страниц(ы)
Содержание
Введение
Заключение
Список литературы

Автор: Pingvin78
Содержание
ВВЕДЕНИЕ
1. Аналитическая часть
2. Расчетно-технологическая часть
2.1. Описание технологической схемы
2.2. Стандартизация. Технологическая характеристика сырья
2.3 Свойства готовых продуктов, сырья и полуфабрикатов.
2.4. Химизм основных и побочных реакций
2.5. Расчет материального баланса отделения концентрирования HNO3
2.6. Расчет теплового баланса
3. Технико-технологическая часть
3.1. Выбор и расчет производительности основного и вспомогательного оборудования технологической схемы
3.2 Расчет количества аппаратов
4. Выбор и обоснование схемы автоматизации производственного процесса
5. Безопасность и экологичность проекта.
6. Строительно-монтажная схема здания цеха и компоновка оборудования
Заключение
Список использованных источников
Введение
В настоящее время развитие производств, применяющих смесь азотной и серных кислот в качестве нитрующего агента, привело к получению огромных количеств отработанных кислотных смесей. Эти смеси с экономической точки зрения необходимо регенерировать и в необходимых расчетных концентрациях возвращать обратно в производственный цикл, тем самым удешевляя единицу себестоимости готовой продукции.
Состав тройных смесей HNO3 – H2SO4 – H2O, поступающих на регенерацию, колеблется в довольно широких пределах. В одних случаях они представляют сильно разбавленные кислотные смеси с содержанием азотной кислоты 5-10%, в других случаях отработанные кислоты содержат 1-2% азотной кислоты и 65-70% серной кислоты, в которой растворены окислы азота N2O3, образующие нитрозилсерную кислоту HNSO5.
Регенерация таких смесей представляет собой определенные трудности и требует изыскания все новых и новых способов, обеспечивающие нормальное ведение процесса разгонки отработанных кислот, а также получение азотной и серной кислот, которые по своим качествам и техническим характеристикам не уступают свежим кислотам применяемым для нитрации.
Начальной ступенью регенерации отработанных кислот является их денитрация. Этот процесс заключается в выделении их кислотной смеси азотной кислоты и окислов азота, содержащихся в смеси. В результате проведения процесса денитрации получается 68-70% серная кислота, которая поступает на концентрирование, после чего, в случае необходимости, может быть снова направлена непосредственно в цикл нитрации.
перегрев и разложение серной кислоты до сернистого ангидрида (рис. 2.1)
Заключение
В данном дипломном проекте были рассмотрены и рассчитаны отделения денитрации отработанных кислот и концентрирования азотной кислоты и серной кислоты. Осуществлены необходимые материальные и технологические расчеты, подтверждающие обоснованность предлагаемых инженерных решений. По сравнению с действующим производством внесены следующие технологические решения:
На фазе улова окислов азота и паров азотной кислоты используется абсорбция с помощью серной кислоты. Это обеспечивает очистку отходящих газов до санитарных норм.
Процесс регенерации отработанных кислот переведен на автоматизированное регулирование с применением УВМ. В частности, на стадии подачи кислот в колонну ГБХ предусмотрено автоматическое прекращение подачи компонентов в случае аварии.
Внедрение этих изменений позволяет улучшить условия труда за счет перевода автоматизации на более высокий уровень, уменьшить износ оборудования, улучшить экологическую обстановку.
Экономический анализ проекта показывает, что в результате изменений себестоимость 1 тонны H2SO4 снизилась на при сохранении численности персонала.
Проект экономически целесообразен.
Список литературы
1. Атрощенко В.И., Каргин С.И. Технология азотной кислоты. -М.:Химия, 1970.-493с.
2. Амелин А.Г., Яшке Е.В. Производство серной кислоты. -М.:Высшая школа, 1974.-223с.
3. Лебедев А.Я. Установки для денитрации и концентрирования серной кислоты.- М.:Химия, 1972.-240с
4. Амелин А.Г. Технология серной кислоты.- М.:Химия, 1983.-340с.
5. Методика расчета технологического процесса концентрирования кислоты в вихревой колонне /сост. Халитов Р.А.; КХТИ.-Казань, 1991.-30 с.
6. Касаткин А.Г. Основные процессы и аппараты химической технологии.-М:Химия, 1971.-783с.
7. Павлов К.Ф, Романков А.Т., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии.-А.:Химия,1987.-705с.
8. Автоматические приборы, регуляторы и вычислительные системы: Справочное пособие /Б.Д. Кошарский, Т.У. Бедновская, В.А.Бек и др.-Л.:Машиностроение, 1976.-448с
9. Лащинский А.А. Толчинский А.Р. Основы конструирования и расчета химической аппаратуры.: Л.:Машиностроение, 1970.-752с
10. Основные процессы и аппараты химической технологии: Пособие по проектированию/Под. ред. Ю.И. Дытнерского.-
11. Вредные вещества в промышленности: Справочник, тIII/Под ред. Н.В. Лазарева.- М:Химия, 1976.-592с.
12. Фарзанс Н.Г., Ильясов П.В. Технологические измерения и прибоы.-М.:Высшая школа,1982.-260с.
13. Макаров Г.В. Охрана труда в химической промышленности.- М:Химия, 1989.-495с.
14. ГОСТ 12.10.04.-86 Пожарная безопасность. Общие требования.
15. ГОСТ 12.1.012.-78 Вибрация. Общие требования безопасности.
16. ГОСТ 12.4.103.-80 Индивидуальные средства защиты.
17. ГОСТ 12.4.003.-83 Допустимые уровни шума.
18. ГОСТ 12.1.019.-89 Воздух рабочей зоны
19. ГОСТ 12.04.05.-89 Вентиляция
20. СН 305-74 Молниезащита
21. СНиП 2.04.05-89 Вентиляция
22. СНиП 23.05.05-95 Освещение
23. h**t://w*w.engineer-oht.r*/
24. ПУЭ. Правила устройства электроустановок
25. Экономическое обоснование курсовых и лдипломных проектов: Метод указан. /Сост.: В.И.Вальперт, Р.Г. Тазеев, Ю.Н. Барышев, И.Л.Шарифуллин. КХТИ.-Казань, 1991.-28 с.
Тема: | «Регенерация кислотных смесей и концентрирования слабой азотной кислоты» | |
Раздел: | Промышленность и Производство | |
Тип: | Курсовая работа | |
Страниц: | 78 | |
Цена: | 300 руб. |
Закажите авторскую работу по вашему заданию.
- Цены ниже рыночных
- Удобный личный кабинет
- Необходимый уровень антиплагиата
- Прямое общение с исполнителем вашей работы
- Бесплатные доработки и консультации
- Минимальные сроки выполнения
Мы уже помогли 24535 студентам
Средний балл наших работ
- 4.89 из 5
написания вашей работы
-
Дипломная работа:
86 страниц(ы)
ВВЕДЕНИЕ
1. Аналитическая часть
1.1 Историческая справка
1.2 Общие сведения о концентрировании серной кислоты1.2.1 Физико-химические свойства серной кислотыРазвернутьСвернуть
1.2.2 Раскисление серной кислоты при ее концентрировании
1.3 Методы концентрирования серной кислоты
1.4 Выбор и обоснование метода производства
1.5 Химизм основных и побочных реакций
2. Расчетно-технологическая часть
2.1 Описание и режимы технологического процесса
2.1.1 Краткое описание технологического процесса
2.1.2Денитрация и концентрирование азотной кислоты
2.1.3 Контроль технологического процесса концентрирования азотной кислоты
2.1.4 Улов нитрозных газов
2.1.5 Контроль технологического процесса улова нитрозных газов
2.1.6 Концентрирование серной кислоты
2.1.7 Технологический процесс и режим работ колонны концентрирования серной кислоты БМКСХ
2.1.8 Порядок пуска вихревой колонны
2.1.9 Останов вихревой колонны
2.2.2 Упаковка, маркировка регенерированной серной кислоты
2.2.3 Прием кислот со стороны
2.3 Техническая характеристика сырья, полуфабрикатов и продуктов
2.4 Материальный баланс производства
2.5. Расчет теплового баланса вихревой колонны
2.6 Выбор и расчет технологического оборудования
2.7 Механический расчет вихревой ферросилидовой колонны концентрирования серной кислоты
3 ТЕХНИКА БЕЗОПАСНОСТИ И ПРОТИВОПОЖАРНАЯ ПРОФИЛАКТИКА
4 АВТОМАТИЗАЦИЯ
5 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ПРОЕКТА
Заключение
Список использованных источников
-
Дипломная работа:
101 страниц(ы)
ВВЕДЕНИЕ 3
1. АНАЛИТИЧЕСКАЯ ЧАСТЬ 4
1.1. ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ВЫБРАННОГО МЕТОДА ПРОИЗВОДСТВА 41.2 ПАТЕНТНАЯ ЧАСТЬ 8РазвернутьСвернуть
1.3 ВЫБОР И ОБОСНОВАНИЕ РАЙОНА СТРОИТЕЛЬСТВА 13
Географические и климатические данные региона. 14
2. РАСЧЕТНО-ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ 15
2.1. ОПИСАНИЕ ТЕХНОЛОГИЧЕСКОЙ СХЕМЫ 15
2.2 ПРИНЦИП РАБОТЫ КОЛОННЫ КОНЦЕНТРИРОВАНИЯ H2SO4 18
2.3. СТАНДАРТИЗАЦИЯ. ТЕХНОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА СЫРЬЯ, ПОЛУФАБРИКАТОВ, ГОТОВОГО ПРОДУКТА. ГОСТ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ. 20
Свойства готовых продуктов, сырья и полуфабрикатов. 22
2.4. ХИМИЗМ ОСНОВНЫХ И ПОБОЧНЫХ РЕАКЦИЙ [4] 23
2.5 ИНЖЕНЕРНЫЕ РЕШЕНИЯ 27
2.6. РАСЧЕТ МАТЕРИАЛЬНОГО БАЛАНСА ОТДЕЛЕНИЯ КОНЦЕНТРИРОВАНИЯ HNO3 [1] 27
2.7. РАСЧЕТ ТЕПЛОВОГО БАЛАНСА [7] 33
3. ТЕХНИКО-ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ 44
3.1. ВЫБОР И РАСЧЕТ ПРОИЗВОДИТЕЛЬНОСТИ ОСНОВНОГО И ВСПОМОГАТЕЛЬНОГО ОБОРУДОВАНИЯ ТЕХНОЛОГИЧЕСКОЙ СХЕМЫ 44
3.2 РАСЧЕТ КОЛИЧЕСТВА АППАРАТОВ 45
4. КОНСТРУКТИВНО-МЕХАНИЧЕСКИЕ РАСЧЕТЫ 46
4.1 РАСЧЕТ ЧИСЛА СТУПЕНЕЙ КОНТАКТА ФАЗ КОНЦЕНТРАТОРА [5] 46
1.2. ГИДРОДИНАМИЧЕСКИЙ РАСЧЕТ 50
1.2.1. Расчет первой по ходу газового потока ступеней контакта фаз [5] 50
4.2.2. Расчет гидродинамических характеристик второй и последующих по ходу газа ступеней вихревой колонны [5] 53
4.3. МЕХАНИЧЕСКИЕ РАСЧЕТЫ ОСНОВНЫХ ДЕТАЛЕЙ И УЗЛОВ ВИХРЕВОЙ КОЛОННЫ [6], [7] 57
5. ВЫБОР И ОБОСНОВАНИЕ СХЕМЫ АВТОМАТИЗАЦИИ ПРОИЗВОДСТВЕННОГО ПРОЦЕССА 62
ОБЩИЕ СВЕДЕНИЯ О ТИПОВОЙ МИКРОПРОЦЕССОРНОЙ СИСТЕМЕ. 63
ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС РЕГЕНЕРАЦИИ ОТРАБОТАННЫХ КИСЛОТ 64
ОПИСАНИЕ КОНТУРОВ 66
Регулирование уровня в напорном баке 66
2 Регулирование температуры охлажденной кислоты по изменению подачи хладагента. 66
Регулирование соотношения расходов при автоматизации топки 67
4. Контур контроля давления 67
5. Регулирование концентрации кислот 68
9. ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ПРОЕКТА 89
Расчет нормируемых оборотных средств: 91
Расчет численности и фонда заработной платы: 92
Расчет фонда заработной платы основных производственных рабочих 93
Расчет фонда З.П. вспомогательных рабочих (дежурный персонал) 95
Расчет годового расхода электроэнергии (по проекту) 97
Смета цеховых расходов 100
Сравнительные технико-экономические показатели производства 102
6. БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ПРОЕКТА. 72
АНАЛИЗ ПРОИЗВОДСТВА. 72
ИНДИВИДУАЛЬНЫЕ СРЕДСТВА ЗАЩИТЫ 72
ШУМ И ВИБРАЦИЯ 74
ВЕНТИЛЯЦИЯ 75
Расчет вентиляции 76
МЕТЕОРОЛОГИЧЕСКИЕ УСЛОВИЯ 76
ПОЖАРНАЯ ПРОФИЛАКТИКА 77
ОСВЕЩЕНИЕ 79
Расчет естественного освещения 79
Расчет искусственного освещения. 80
Электробезопасность 81
Защитные меры в электрооборудовании 82
Статическое электричество и молниезащита. 83
Молниезащита 83
Расчет молниезащиты 83
БЕЗОПАСНОСТЬ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА. 85
ЭКОЛОГИЧНОСТЬ ПРОЕКТА 85
2.8 РАСЧЕТ МАТЕРИАЛЬНОГО БАЛАНСА КОНЦЕНТРИРОВАНИЯ H2SO4 39
2.9. РАСЧЕТ ТЕПЛОВОГО БАЛАНСА ВИХРЕВОЙ КОЛОННЫ 40
7. СТРОИТЕЛЬНО-МОНТАЖНАЯ СХЕМА ЗДАНИЯ ЦЕХА И КОМПОНОВКА ОБОРУДОВАНИЯ 86
8. ГЕНЕРАЛЬНЫЙ ПЛАН. ПОЯСНЕНИЯ К СХЕМЕ ГЕНЕРАЛЬНОГО ПЛАНА. 88
ЗАКЛЮЧЕНИЕ 103
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 104
ПРИЛОЖЕНИЕ, СПЕЦИФИКАЦИЯ 106
-
Дипломная работа:
Рассчитать и спроектировать стадию абсорбции окислов азота в производстве азотной кислоты
128 страниц(ы)
ВВЕДЕНИЕ 3
1 ЛИТЕРАТУРНЫЙ ОБЗОР 4
1.1 Историческая справка 4
1.2 Описание технологии 7
1.3 Физико-химические основы получения азотной кислоты 191.4 Способы окисления оксида азота 25РазвернутьСвернуть
1.5 Недостатки существующей технологии и пути ее совершенствования 33
1.7 Аэродинамика вихревого контактного устройства 43
2 ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ 54
2.1 Описание методики 54
2.2 Обработка результатов эксперимента 59
3 РАСЧЕТНАЯ ЧАСТЬ 63
3.1 Материальный баланс 63
3.2 Тепловой баланс 80
3.2 Расчет толщины стенки 82
3.3 Расчет днища 82
3.4 Расчет крышки 83
3.5 Расчет фланцевого соединения 84
3.6 Расчет вихревого контактного устройства 87
5 МЕТРОЛОГИЧЕСКАЯ ПРОРАБОТКА 89
5.1 Описание функциональной схемы автоматизации установки 89
5.2 Обработка результатов прямых измерений 89
6 ОБЕСПЕЧЕНИЕ ПРОИЗВОДСТВЕННОЙ И ЭКОЛОГИЧЕСКОЙ БЕЗОПАСНОСТИ 99
6.1 Характеристика производственной и экологической опасности объекта 99
6.2 Расчет освещения 99
6.3 Метеоусловия 101
6.4 Вентиляция и отопление 102
6.5 Шум и вибрация 102
6.6 Индивидуальные средства защиты 103
6.7 Электробезопасность 103
6.8 Пожарная безопасность 106
6.9 Молниезащита 107
6.10 Экологичность работы 108
7 ПАТЕНТНЫЕ ИССЛЕДОВАНИЯ 109
8 ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ 118
8.1 Составление сетевого графика 118
8.2 Затраты на основные и вспомогательные материалы 119
8.3 Энергетические затраты 119
8.4 Фонд заработной платы 120
8.5 Накладные расходы 120
8.6 Амортизационные отчисления 121
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 123
-
Дипломная работа:
82 страниц(ы)
Введение …. 7
1 Анализ существующих систем впрыскивания топлива …. 9
1.1 Общие сведения и классификация систем впрыскивания топлива … 91.2 Анализ непосредственного впрыска …. 11РазвернутьСвернуть
1.3 Анализ центрального впрыска … 15
1.4 Анализ распределенного впрыска …. 21
2 Выбор оптимальной системы для двигателя ЗМЗ-320… 31
2.1 Выбор варианта распределенного впрыска… 31
2.2 Обоснование необходимого комплекта датчи-ков… 34
3 Расчет и подбор приборов распределенного впрыска для двигателя ЗМЗ-320…
41
3.1 Применение двигателя ЗМЗ-320 в качестве силового агрегата 41
3.2 Расчёт деталей кривошипно-шатунного механизма на прочность … 45
3.3 Расчет стабилизатора перепада давления… 55
3.4 Выбор форсунок… 63
3.5 Выбор остальных узлов и элементов… 65
4 Технико-экономическая оценка проекта и конструкции… 70
Заключение …. 79
Список используемых источников ….…. 81
-
Дипломная работа:
Анализ ассортимента и экспертиза качества молочных консервов (на примере продуктового магазина)
83 страниц(ы)
ВВЕДЕНИЕ
1. ТОВАРОВЕДЧЕСКАЯ ХАРАКТЕРИСТИКА МОЛОЧНЫХ КОНСЕР-ВОВ
1.1 Потребительские свойства молочных консервов1.2 Характеристика ассортимента молочных консервовРазвернутьСвернуть
1.3 Сырьевая база и производство молочных консервов
1.4 Требования к качеству молочных консервов
1.5 Пороки молочных консервов: причины образования, меры предупреждения
1.6 Упаковка, маркировка, хранение молочных консервов
1.7 Состояние рынка молочных консервов в РФ
2. ИССЛЕДОВАНИЕ АССОРТИМЕНТА, КАЧЕСТВА МОЛОЧНЫХ КОНСЕРВОВ, РЕАЛИЗУЕМЫХ В ИП КРИВОМАЗОВ К.Е.
2.1 Характеристика хозяйственной и коммерческой деятельности
2.2 Анализ ассортимента реализуемых молочных консервов
2.3 Анализ работы с поставщиками молочных консервов
2.4 Организация приемки молочных консервов
2.5 Анализ качества реализуемых молочных консервов
2.6 Оценка уровня конкурентоспособности молочных консервов
3. МОДЕЛЬ СОВЕРШЕНСТВОВАНИЯ ДЕЯТЕЛЬНОСТИ ПРЕДПРИ-ЯТИЯ В ОБЛАСТИ АССОРТИМЕНТА И КАЧЕСТВА РЕАЛИЗОВАН-НОЙ ПРОДУКЦИИ
3.1 Модель совершенствования деятельности предприятия
3.2 Прогнозная реализация и оценка прогнозной экономической эффек-тивности предложенной модели
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ -
Реферат:
Галогенирование кислород- и азотсодержащих соединений
16 страниц(ы)
Введение 3
1. Общая характеристика процессов галогенирования 4
2. Техника безопасности в процессах галогенирования 93. Химия и теоретические основы процесса галогенирования 10РазвернутьСвернуть
Список литературы 16
Не нашли, что искали?
Воспользуйтесь поиском по базе из более чем 40000 работ
Предыдущая работа
Производство таблеток глюконата кальцияСледующая работа
Добыча и переработка нефти на предприятии ТНК-ВР




-
Задача/Задачи:
ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 1 Основы гидравлики
1 страниц(ы)
1.3. Состав продуктов горения 1 кг коксового газа (в кг)) СО2 - 1,45; М2 =8,74; Н2О-1,92. Найти объемный состав продуктов горения.1.4. Разрежение в осушительной башне сернокислотного завода измеряется U-образным тягомером наполненным серной кислотой плотностью 1800 кг/м3. Показание тягомера 3 см. Каково абсолютное давление в башне, выраженное в Па, если барометрическое давление составляет 750 мм рт. ст.?РазвернутьСвернуть
1.5. Манометр на трубопроводе, заполненном жидкостью, показывает давление 0,18 кгс/см2. На какую высоту Н над точкой присоединения манометра поднимается в открытом пьезометре жидкость, находящаяся в трубопроводе, если эта жидкость: а) вода, б) четыреххлористый углерод (рис. 1.23)?
1.6. Высота уровня мазута в резервуаре 7,6 м (рис. 1.24). Относительная плотность мазута 0,96. На высоте 800 мм от дна в резервуаре имеется круглый лаз диаметром 760 мм, крышка которого прикрепляется болтами диаметром 10 мм. Принимая для болтов допустимое напряжение на разрыв 700 кгс/см2, определить необходимое число болтов. Определить также давление мазута на дно резервуара.
1.7. На малый поршень диаметром 40 мм ручного гидравлического пресса (рис. 1.25) действует сила 589 Н (60 кгс). Пренебрегая потерями, определить силу, действующую на прессуемое тело, если диаметр большого поршня 300 мм.
1.8. Динамический коэффициент вязкости жидкости при 50 °С равняется 30 мПа-с. Относительная плотность жидкости 0,9. Определить кинематический коэффициент вязкости. -
Дипломная работа:
Разработка станции технического обслуживая на 11 постов в городе Перми
140 страниц(ы)
ВВЕДЕНИЕ 5
1 АНАЛИЗ ХОЗЯЙСТВЕННОЙ ДЕЯТЕЛЬНОСТИ СТО 7
1.1 Организация технологических процессов ТО легковых автомобиле 161.2 Выбор метода организации производства СТО 19РазвернутьСвернуть
1.3 Организация производственного процесса СТО 19
1.4 Организация работ ТО и ТР легковых автомобилей 21
2. ТЕХНОЛОГИЧЕСКИЙ РАСЧЕТ СТО 21
2.1 Исходные данные 21
2.2 Расчет годового объема работ СТО 31
2.2.2 Расчёт числа автомобилей, обслуживаемых СТО 36
2.2.3 Расчет годового объема уборочно-моечных работ 37
2.2.4 Расчет годового объема работ по приемке и выдаче автомобилей 37
2.2.5 Расчёт годового объема вспомогательных работ 38
2.3 Распределение годовых объемов работ по зонам и цехам 39
2.4 Расчет числа рабочих СТО 41
2.5 Расчет числа постов и автомобиле-мест ожидания 46
2.6 Расчет площадей помещений 49
2.7 Расчёт площади СТО 56
3 КОНСТРУКТОРСКАЯ ЧАСТЬ 58
3.1 Анализ конструкций стендов для диагностики подвески лекговых автомобилей.58
3.2 Описание стенда.64
3.2.1 Методы диагностирования амортизаторов и подвески.70
3.3 Расчет экцентрикового зажима.76
3.4 Подбор электродвигателя.78
3.6 Расчеты на прочность.81
3.7 Редуктор шевронный.83
3.8 Расчет на прочность валов.89
3.9 Выбор смазки редуктора.97
3.10 Проверка прочности шпоночного соединения.98
3.11 Проверка долговечности подшипника.100
3.12 Подбор муфты.101
3.13 Монтаж стенда.101
3.14 Техническое обслуживание стенда.102
4. БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ. 104
4.1 Безопасность жизнедеятельности.104
4.1.1 Анализ условий и охрана труда на предприятии.104
4.1.2 Требования безопасности при техническом обслуживании и ремонте автомобилей.108
4.1.3 Мероприятия по выполнению требований безопасности.115
4.2 Экологическая безопасность. 116
4.2.1 Негативное воздействие предприятия на окружающую среду и его снижение.117
4.2.2 Выбросы вредных и загрязняющих веществ в атмосферу.118
4.2.3 Обращение с отходами.120
4.2.4 Отчистка сточных вод от загрязнения.126
5. ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ПРЕДПРИЯТИЯ 128
5.1 Этапы развития производства 128
5.2 Выбор метода экономической оценки инвестиций. 128
5.3 Расчет срока окупаемости 130
ЗАКЛЮЧЕНИЕ 139
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 140
-
Курсовая работа:
Алкилирование изобутана изобутиленом до 2,2,4-триметилпентана (изооктана)
27 страниц(ы)
1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ 3
1.1 Физико-химические свойства сырья 4
1.2 Физико-химические свойства целевого продукта и его применение 51.4 Исторически очерк производства 8РазвернутьСвернуть
1.5 Основные промышленные способы производства 9
1.6 Проблемы экологии и правила безопасности при производстве 11
1.7 Технологическая схема и краткое описание процесса производства 12
1.8 Основные технологические параметры влияющие на процесс 15
1.9 Основной аппарат (реактор) 17
2. ТЕХНОЛОГИЧЕСКИЕ РАСЧЕТЫ 19
2.1 Исходные проектные данные 19
2.2 Расчет материального баланса. 20
2.3 Таблица материального баланса 22
2.4 Технологические показатели процесса 22
2.5 Предложения по снижению себестоимости целевого продукта 23
2.6 Предложения по улучшению качества целевого продукта 23
2.7 Совершенствование техноогического процесса 24
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 27
-
Курсовая работа:
Расчет и подбор просеивающей машины
28 страниц(ы)
Введение 4
Литературный обзор 5
Часть 1 Описание группы оборудования 5
1.1 Классификация технологических машин 6Часть 2 Описание конкретной группы просеивателей 9РазвернутьСвернуть
2.1 Машина для просеивания муки МПМ-800 10
2.2 Мукопросеиватель МПС-141-1 13
2.3 Машина для просеивания муки и сыпучих продуктов МПМВ-250 14
2.4 Просеиватель МС-300 16
2.5 Малогабаритный мукопросеиватель «Воронеж-2» 17
Часть 3 Описание принципа работы 20
3.1 Описание принципа машины для просеивания муки МПМ-800 М 20
3.2 Правила эксплуатации и техники безопасности 22
3.3 Расчет машины для просеивания муки МПМ-800 М 23
Заключение 27
Список литературы 28
-
Курсовая работа:
Разработка расходомера переменного перепада давления (РППД) с диафрагмой
27 страниц(ы)
Введение 3
1. Описание расходомера с тепловыми метками 4
2 Расчет теплофизических характеристик измеряемой среды 103. Расчет сужающего устройства 12РазвернутьСвернуть
4 Выбор схемы сужающего устройства 19
Заключение 26
Список используемых источников 27
-
Контрольная работа:
7 страниц(ы)
1. Составить схему контроля, сигнализации, регистрации расхода абсорбента, давления отвода очищенного газа и температуры газовой смеси.2. Выбрать из справочника приборы.РазвернутьСвернуть
3. Рассчитать среднеквадратичную погрешность контроля.
4. Определить абсолютную и относительную погрешность на отметке 600куб.м/час; 0,24атм; 24°С.
5. Составить схему автоматического регулирования расхода газовой смеси.
6. Выбрать из справочника приборы.
7. Выбрать тип регулятора, исходя из свойств объекта:
запаздывание 40 с;
постоянная времени 193с;
коэффициент усиления 1,38.
8. Рассчитать параметры настройки регулятора, если переходный процесс колебательный.
9. Составить принципиальную электрическую схему дистанционного управления приводом компрессора.
10. Предусмотреть автоматическую защиту привода от превышения температуры газовой смеси.
11. Составить спецификацию на приборы и средства автоматизации.
12. Оформление задания производить на листах А4 условные обозначения приборов выполнить согласно ГОСТ 21.404-85. (данные по приборам https://www.engineer-oht.ru). -
Дипломная работа:
Фаза стабилизации производства нитроцеллюлозы
60 страниц(ы)
ВВЕДЕНИЕ 5
1 АНАЛИТИЧЕСКАЯ ЧАСТЬ 7
1.1 Историческая справка 7
1.2 Характеристика нитроцеллюлозы 91.3 Характеристика сырья 12РазвернутьСвернуть
2 РАСЧЕТНО-ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ 16
2.1 Описание технологической схемы 16
2.2 Расчет материального баланса 19
2.3 Расчет количества основного и вспомогательного оборудования 22
2.4 Тепловой расчет 24
2.5 Энергетический расчет 28
2.5.1 Расчет расхода электроэнергии для привода мешалки автоклава 28
2.5.2 Расчет расхода пара для автоклава 28
2.5.3 Расход воды в автоклавах 29
2.6 Выбор конструкции аппаратов 30
2.6.1 Автоклав 31
2.6.2 Технологический процесс работы автоклава 32
2.6.3 Нововведения в стадию стабилизации нитроцеллюлозы 35
3. ТЕХНОЛОГИЧЕСКАЯ БЕЗОПАСНОСТЬ 40
3.1 Техника безопасности 41
3.2 Шум и вибрация 42
3.4 Отопление и вентиляция 43
3.5 Освещение 44
3.6.Электробезопасность 45
3.7 Молниезащита 45
3.8 Требования безопасности, промышленной санитарии и пожарной безопасности 46
4 ТЕХНИКО-ЭКОНОМИЧЕСКИЙ РАСЧЕТ 47
ЗАКЛЮЧЕНИЕ 64
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 65
-
Задача/Задачи:
Павлов Романков раздел 11 Глубокое охлаждение
2 страниц(ы)
11.1. Вычислить холодильный коэффициент и мощность, потребляемую холодильной установкой, работающей по циклу Карно, если ее холодопроизводительность 6400 Вт при температуре испарения -10°С. Температура конденсации 22 °С.11.2. Найти минимальную затрату работы (по циклу Карно) и расход воды в конденсаторе при выработке 100 кг/ч льда из воды, имеющей температуру 0 °С. Хладагент испаряется при -5°С, а конденсируется при 25°С. Вода в конденсатор подается при 12 СС, а уходит при 20 СС. Удельная теплота замерзания воды 335 кДж/кг.РазвернутьСвернуть
11.3. Определить удельную холодопроизводительность хладагента и холодильный коэффициент цикла для: а) аммиака; б) диоксида углерода и в) дифтордихлорметана СF2Сl2. Температура испарения - 15 0С, температура конденсации 300С. Цикл сухой, переохлаждение жидкости перед дросселированием отсутствует.
11.4. Вычислить теоретический холодильный коэффициент углекислотной холодильной установки, если температура конденсации 20°С, а температура испарения -40°С. Цикл сухой, переохлаждение жидкости перед дросселированием отсутствует.
11.5. Сравнить теоретические холодильные коэффициенты аммиачной компрессионной холодильной установки, работающей при температуре испарения -20 °С и температуре конденсации 30 °С: а) для цикла Карно; б) для реального влажного цикла; в) для сухого цикла без переохлаждения жидкого аммиака; г) для сухого цикла с переохлаждением до 25 СС жидкого аммиака после конденсации.
11.6. По условиям предыдущей задачи сравнить теоретические холодильные коэффициенты для фреоновой холодильной установки, пользуясь диаграммой i - lg р (рис. XXVIII).
Задача 11.7 В конденсаторе аммиачной холодильной установки 20 м3/ч воды нагревается на 6 К. Теоретическая мощность, затрачиваемая компрессором, 23,5 кВт. Определить холодопроизводительность установки и холодильный коэффициент.
-
Задача/Задачи:
ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 5 Выпаривание
1 страниц(ы)
5.1. Рассчитать удельный расход сухого насыщенного водяного пара при выпаривании воды под атмосферным давлением и под вакуумом (разрежением) 0,8 кгс/см2. Абсолютное давление греющего водяного пара в обоих случаях рабс = 2 кгс/см2. Вода поступает на выпарку: а) при температуре 15 °С; б) подогретой до температуры кипения.5.2. Производительность выпарного аппарата по исходному раствору 2650 кг/ч. Концентрация исходного раствора 50 г/л воды. Концентрация выпаренного раствора 295 г на 1 л раствора. Плотность выпаренного раствора 1189 кг/м3. Найти производительность аппарата по выпаренному раствору.РазвернутьСвернуть
5.3. Как изменится производительность выпарного аппарата, если на стенках греющих труб отложится слой накипи толщиной 0,5 мм? Коэффициент теплопередачи К для чистых труб равен 1390 Вт/(м2-К). Коэффициент теплопроводности накипи λ = 1,16 Вт/(м.К).
5.4. Производительность выпарного аппарата, обогреваемого насыщенным водяным паром с избыточным давлением ри;зб = 1,5 кгс/см2, необходимо повысить с 1200 до 1900 кг/ч (по разбавленному раствору). Выпаривание производится под атмосферным давлением, температура кипения раствора в аппарате 105°С, раствор подается на выпарку подогретым до температуры кипения. Определить, какого давления греющий пар надо подавать в аппарат. Тепловые потери не учитывать, коэффициент теплопередачи считать неизменным, так же как и конечную концентрацию раствора.
-
Задача/Задачи:
ЗАДАЧИ ПАВЛОВ РОМАНКОВ РАЗДЕЛ 4 Теплопередача
1 страниц(ы)
4.1. Во сколько раз увеличится термическое сопротивление стенки стального змеевика, свернутого из трубы диаметром 38х2,5 мм, если покрыть ее слоем эмали толщиной 0,5 мм? Считать стенку плоской. Коэффициент теплопроводности эмали 1,05 Вт/(м.К).4.2. Паропровод длиной 40 м, диаметром 51x2,5 мм покрыт слоем изоляции толщиной 30 мм; температура наружной поверхности изоляции t=45°С, внутренней tг = 175°С. Определить количество теплоты, теряемое паропроводом в 1 ч. Коэффициент теплопроводности изоляции λ = 0,116 Вт/(м-К).РазвернутьСвернуть
4.3. Стальная труба диаметром 60x3 мм изолирована слоем пробки толщиной 30 мм и сверху еще слоем совелита (85 % магнезии + 15% асбеста) толщиной 40мм. Температура стенки трубы -110°С, а наружной поверхности изоляции 10 °С. Вычислить часовую потерю холода с 1 м длины трубы.
4.4. Как изменится потеря холода в условиях предыдущей задачи, если внутренний слой сделать совелитовым (б = 40 мм), а наружный - пробковым (δ = 30 мм)?
4.5. Найти температуру внутренней поверхности обмуровки аппарата (рис. 4.19), если температура на наружной поверхности ее 35 °С. Толщина обмуровки 260 мм. Термометр, заделанный на глубину 50 мм от наружной поверхности, показывает температуру 70 °С.
4.6. Вычислить коэффициент теплопроводности для: а) жидкого хлороформа при t = 20 °С; б) сернистого газа при t = 160 °С и абсолютном давлении 1 кгс/сма (~0,1 МПа); в) 25% водного раствора хлористого кальция при t= 30 °С.
4.7. Необходимо испарять 1600 кг/ч жидкости, кипящей при t= 137°С и поступающей в испаритель при этой температуре. Удельная теплота испарения жидкости r = 377•108 Дж/кг. Температура греющего пара должна быть не ниже 150 °С. Определить расход греющего пара: а) сухого насыщенного, риаб = 4 кгс/сма (~0,4 МПа); б) перегретого до 250 °С, ризб = 4 кгс/см2 (~0,4 МПа); в) перегретого до 250°С, риаб = 3 кгс/смя (~0,3 МПа). Удельная теплоемкость перегретого пара 2,14-103 Дж/(кг-К).
Изобразить процессы изменения состояния греющего пара на диаграмме Т - S. Конденсат греющего пара отводится при температуре конденсации.
4.8. До какой температуры будут нагреты глухим паром 2 т раствора хлористого кальция, если расход греющего пара (ра6с = 2 кгс/сма, т. е. ~0,2 МПа) за 2,5 ч составил 200 кг, а расход теплоты на нагрев аппарата и потери теплоты в окружающую среду составляют в среднем 2030 Вт? Начальная температура раствора 10 °С. Удельная теплоемкость раствора 2,5 х 103 Дж/(кг К).
4.9. Определить количество передаваемой теплоты в противоточном конденсаторе, в котором конденсируется 850 кг/ч пара сероуглерода под атмосферным давлением. Пар сероуглерода поступает в конденсатор с температурой 90 °С. Жидкий сероуглерод выхолит из конденсатора при температуре на в °С ниже температуры конденсации. Удельная теплоемкость пара сероуглерода 0,67.103 Дж/(кг-К).
4.10. В кожухотрубчатый конденсатор поступает 120 кг/ч сухого насыщенного пара диоксида углерода под давлением Рабе = 60 кгс/см2 (~6,0 МПа). Жидкий диоксид углерода выходит из конденсатора под тем же давлением при температуре конденсации. Принимая разность температур диоксида углерода и воды на выходе воды из конденсатора 5 К, определить необходимый расход воды, если она поступает в конденсатор с температурой 10 °С.
4.11. Колонна для ректификации жидкого воздуха покрыта слоем тепловой изоляции из шлаковой ваты толщиной 250 мм. Температура жидкости внутри колонны -190 °С, температура воздуха в помещении 20 °С. Какое количество теплоты может проникать из окружающего воздуха в колонну через 1 ма поверхности, если пренебречь термическими сопротивлениями со стороны жидкости, окружающего воздуха и металлической стенки колонны?
4.12. Как изменится коэффициент теплопередачи в аппарате, если заменить стальные трубы диаметром 38x2,5 мм на медные такого же размера: а) в паровом калорифере для воздуха, в котором aвозд = 41 Вт/(м8.К), агр. пара = 11600 Вт/(м2-К); б) в выпарном аппарате, в котором араств = 2320 Вт/(ма-К), агр. пара = 11600 Вт/(мг-К)? Загрязнений поверхности не учитывать.