СтудСфера.Ру - помогаем студентам в учёбе

У нас можно недорого заказать курсовую, контрольную, реферат или диплом

Рассчитать и спроектировать стадию абсорбции окислов азота в производстве азотной кислоты - Дипломная работа №26420

«Рассчитать и спроектировать стадию абсорбции окислов азота в производстве азотной кислоты» - Дипломная работа

  • 128 страниц(ы)

Содержание

Введение

Выдержка из текста работы

Заключение

Список литературы

Примечания

фото автора

Автор: Pingvin78

Содержание

ВВЕДЕНИЕ 3

1 ЛИТЕРАТУРНЫЙ ОБЗОР 4

1.1 Историческая справка 4

1.2 Описание технологии 7

1.3 Физико-химические основы получения азотной кислоты 19

1.4 Способы окисления оксида азота 25

1.5 Недостатки существующей технологии и пути ее совершенствования 33

1.7 Аэродинамика вихревого контактного устройства 43

2 ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ 54

2.1 Описание методики 54

2.2 Обработка результатов эксперимента 59

3 РАСЧЕТНАЯ ЧАСТЬ 63

3.1 Материальный баланс 63

3.2 Тепловой баланс 80

3.2 Расчет толщины стенки 82

3.3 Расчет днища 82

3.4 Расчет крышки 83

3.5 Расчет фланцевого соединения 84

3.6 Расчет вихревого контактного устройства 87

5 МЕТРОЛОГИЧЕСКАЯ ПРОРАБОТКА 89

5.1 Описание функциональной схемы автоматизации установки 89

5.2 Обработка результатов прямых измерений 89

6 ОБЕСПЕЧЕНИЕ ПРОИЗВОДСТВЕННОЙ И ЭКОЛОГИЧЕСКОЙ БЕЗОПАСНОСТИ 99

6.1 Характеристика производственной и экологической опасности объекта 99

6.2 Расчет освещения 99

6.3 Метеоусловия 101

6.4 Вентиляция и отопление 102

6.5 Шум и вибрация 102

6.6 Индивидуальные средства защиты 103

6.7 Электробезопасность 103

6.8 Пожарная безопасность 106

6.9 Молниезащита 107

6.10 Экологичность работы 108

7 ПАТЕНТНЫЕ ИССЛЕДОВАНИЯ 109

8 ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ 118

8.1 Составление сетевого графика 118

8.2 Затраты на основные и вспомогательные материалы 119

8.3 Энергетические затраты 119

8.4 Фонд заработной платы 120

8.5 Накладные расходы 120

8.6 Амортизационные отчисления 121

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 123


Введение

Азотная кислота по объему производства занимает среди других кислот второе место после серной кислоты. Все возрастающий объем производства HNO3 объясняется огромным значением азотной кислоты и ее солей для народного хозяйства [1, 2].

Азотная кислота является одним из исходных продуктов для получения большинства азотсодержащих веществ. До 70-80% ее количества расходуется на получение минеральных удобрений. Одновременно азотная кислота применяется при получении взрывчатых веществ почти всех видов, нитратов и ряда других технических солей; в промышленности органического синтеза; в ракетной технике, как окислитель в различных процессах и во многих других отраслях народного хозяйства.

Промышленностью вырабатывается неконцентрированная (до 60-62% HNO3) и концентрированная (98-99% HNO3) кислота. В небольших объемах выпускается реактивная и азотная кислота особой чистоты. В производстве взрывчатых веществ нитрованием толуола, уротропина, ксилола, нафталина и других органических продуктов применяют концентрированную азотную кислоту. Для получения удобрений потребляется, как правило, разбавленная азотная кислота.


Выдержка из текста работы

Для очистки отходящих газов, содержащих пары азотной кислоты и окислы азота высокой концентрации, на промышленных предприятиях применяются колонные аппараты тарельчатого и насадочного типа. Однако эффективная очистка газовых выбросов, характеризующихся большим объемом отходящих газов, достигающих 50,0 – 100,0 тыс. м3/час, сопряжена с серьезными трудностями. Известно, что действующие на предприятиях абсорбера очистки газов не обеспечивают ПДВ и ПДК. [5]

Одним из способов ускорения процесса массообмена является увеличение скорости взаимодействия фаз, за счет чего увеличивается турбулизация двухфазного потока, однако с увеличением скорости резко возрастает пено- и брызгоунос, устранить который трудно.

Использование барботажных и насадочных аппаратов сдерживается малой скоростью газа по сечению, не превышающего 1 – 1,5 м/с, кроме того, эти аппараты обладают значительным уносом жидкой фазы со ступени на ступень.

Специфичной особенностью процесса очистки отходящих газов от легко растворимых веществ является малое количество жидкости, подаваемой по материальному балансу, для получения продукционного раствора. При абсорбции, например, паров азотной кислоты, жидкости в аппарат поступает примерно в 100 раз меньше. Поэтому для получения необходимой площади поверхности контакта фаз на практике применяют многократную циркуляцию жидкости. Кратность циркуляции обычно находится в пределах 100÷200. Однако при циркуляции жидкости увеличивается брызгоунос. На практике при эксплуатации, например, многоступенчатых пленочных абсорберов брызгоунос кислоты порой превышал количество воды, подаваемой в аппарат. В работе [10] дана оценка степени влияния уноса жидкости на эффективность аппаратов. В аппарате с циркуляцией жидкости оптимальный унос жидкости с тарелки определяется по уравнению:


Заключение

В данном дипломном проекте рассматривалась тема проектирование стадии абсорбции окислов азота в производстве азотной кислоты. Для изучения структуры однофазного газового потока была изготовлена и смонтирована экспериментальная установка. На основании полученных данных было предложено использовать вихревой абсорбер взамен существующего аппарата. В дипломном проекте проводятся расчет материальных ступеней колонны, гидравлический, тепловой, конструктивный и механический расчет подтверждающие возможность работы колонны в эффективном режиме.

Произведен расчет безопасности производства и экономического расчета эффективности внедрения абсорбера, ввиду его большей производительности.


Список литературы

1. Справочник азотчика: в 2 т. Т. 2 / под ред. Н. М. Жаворонков – М.: Химия, 1969

2. Лебедев А. Я. Установки для концентрации и денитрации серной кислоты / А. Я. Лебедев. – М.: Химия, 1972. – 240 с.

3. Атрощенко В. Технология азотной кислоты / В. И. Атрощенко, С. И. Каргин. – М.: Химия, 1970. – 496 с.

4. Справочник азотчика / Под ред. Жаворонкова Н. М. Изд. 2-е, перераб. – М.: Химия, 1978. – 464 с

5. Махоткин А. Ф. Теоретические основы очистки газовых выбросов производства нитратов целлюлозы / А. Ф. Махоткин. – Казань: Изд-во Казанск. ун-та, 2003. – 268 с.

6. Рамм В. М. Абсорбция газов / В. М. Рамм. – М.: Химия, 1976. – 655 с.

7. Астарита Дж. Массопередача с химической реакцией / Дж. Астарита. – Л.: Химия, 1971. - 224 с.

8. Тадеуш Хоблер Массопередача и абсорбция / Хоблер Тадеуш пер. с польского. – Л.: Химия. – 1964. – 322 с.

9. Данные по абсорбции окислов азота h**t://w*w.engineer-oht.r*/

11. Аэродинамика закрученной струи / Под. ред. Р. Б. Ахмедова. М.: Энергия, 1977. – 240 с.

12. Повх И. Л. Техническая гидромеханика / И. Л. Повх. 2-е изд., доп. – Л.: Машиностроение, 1976. – 504 с.


Примечания

Зависимость интегрального параметра раскрутки от высоты радиуса ВКУ (плакат)

Абсорбция оксидов азота (плакат)

Эффективность различных сорбентов оксидов азота (плакат)

Зависимость изменения параметра крутки по высоте и радиусу контактного устройства (плакат)

Схема установки эксперимента

Технологическая схема азотной кислоты А1

Деталировка эксперимента

Тема: «Рассчитать и спроектировать стадию абсорбции окислов азота в производстве азотной кислоты»
Раздел: Технология
Тип: Дипломная работа
Страниц: 128
Цена: 3600 руб.
Нужна похожая работа?
Закажите авторскую работу по вашему заданию.
  • Цены ниже рыночных
  • Удобный личный кабинет
  • Необходимый уровень антиплагиата
  • Прямое общение с исполнителем вашей работы
  • Бесплатные доработки и консультации
  • Минимальные сроки выполнения

Мы уже помогли 24535 студентам

Средний балл наших работ

  • 4.89 из 5
Узнайте стоимость
написания вашей работы
Похожие материалы
  • Дипломная работа:

    Рассчитать и спроектировать адсорбционно-десорбционного цикла диоксида углерода.

    120 страниц(ы) 

    ВВЕДЕНИЕ
    1 АНАЛИТИЧЕСКАЯ ЧАСТЬ
    1.1 Историческая справка о методах получения и использования продукта
    1.2 Выбор и обоснование метода производства
    1.3 Выбор и обоснование проектного метода очистки
    2 РАСЧЕТНО-ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ
    2.1 Описание технологической схемы производства
    2.2 Внесенные изменения по сравнению с аналогом и обоснование изменений вводимых в проект
    2.3 Техническая характеристика сырья, полуфабрикатов и продукта
    2.4 Материальный баланс производства
    3 РАСЧЕТНАЯ ЧАСТЬ
    3.1 Технологический расчет колонн абсорбционно-десорбционного цикла
    3.2. Гидравлический расчет
    3.3 Конструктивный расчет колонны
    3.4 Механический расчет
    3.5 Тепловой баланс
    4 ПАТЕНТНАЯ ЧАСТЬ
    5 ПРОИЗВОДСТВЕННАЯ И ЭКОЛОГИЧЕСКАЯ БЕЗОПАСНОСТЬ
    5.1 Основные физико-химические, токсические, взрыво- и пожароопасные характеристики веществ и материалов, обращающихся в производстве
    5.2 Технологические и технические мероприятия, обеспечивающие безопасность эксплуатации установки
    5.3 Микроклимат рабочей зоны
    5.4 Освещение производственного помещения.
    5.5 Шум и вибрация
    5.6 Защита зданий и сооружений от разрядов атмосферного электричества (молниезащита)
    5.7 Экологическая безопасность производства
    6 СИСТЕМА АВТОМАТИЗИРОВАННОГО УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМ ПРОЦЕССОМ (АСУТП)
    6.1 Анализ технологического процесса с точки зрения автоматизации
    6.2 Схема автоматизированного управления технологическим процессом (АСУТП).
    7 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ПРОЕКТА
    7.1 Общая характеристика предприятия и продукции
    7.2 Производственный план
    7.3 Оценка экономической эффективности
    ЗАКЛЮЧЕНИЕ
    СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
  • Дипломная работа:

    Рассчет и проектирование стадии денитрации отработанных кислот производительностью 80тсут, 98%-ой азотной кислоты

    86 страниц(ы) 

    ВВЕДЕНИЕ
    1. Аналитическая часть
    1.1 Историческая справка
    1.2 Общие сведения о концентрировании серной кислоты
    1.2.1 Физико-химические свойства серной кислоты
    1.2.2 Раскисление серной кислоты при ее концентрировании
    1.3 Методы концентрирования серной кислоты
    1.4 Выбор и обоснование метода производства
    1.5 Химизм основных и побочных реакций
    2. Расчетно-технологическая часть
    2.1 Описание и режимы технологического процесса
    2.1.1 Краткое описание технологического процесса
    2.1.2Денитрация и концентрирование азотной кислоты
    2.1.3 Контроль технологического процесса концентрирования азотной кислоты
    2.1.4 Улов нитрозных газов
    2.1.5 Контроль технологического процесса улова нитрозных газов
    2.1.6 Концентрирование серной кислоты
    2.1.7 Технологический процесс и режим работ колонны концентрирования серной кислоты БМКСХ
    2.1.8 Порядок пуска вихревой колонны
    2.1.9 Останов вихревой колонны
    2.2.2 Упаковка, маркировка регенерированной серной кислоты
    2.2.3 Прием кислот со стороны
    2.3 Техническая характеристика сырья, полуфабрикатов и продуктов
    2.4 Материальный баланс производства
    2.5. Расчет теплового баланса вихревой колонны
    2.6 Выбор и расчет технологического оборудования
    2.7 Механический расчет вихревой ферросилидовой колонны концентрирования серной кислоты
    3 ТЕХНИКА БЕЗОПАСНОСТИ И ПРОТИВОПОЖАРНАЯ ПРОФИЛАКТИКА
    4 АВТОМАТИЗАЦИЯ
    5 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ПРОЕКТА
    Заключение
    Список использованных источников
  • Курсовая работа:

    Разработать и спроектировать скруббер для очистки отходящих газов аммиака и мела из сушилки.

    90 страниц(ы) 

    ВВЕДЕНИЕ
    1 АНАЛИТИЧЕСКАЯ ЧАСТЬ…
    1.1 Историческая справка…
    1.2 Выбор и обоснование метода производства…
    1.3 Характеристика сырья, полуфабрикатов и готовой продукции.
    2 РАСЧЕТНО-ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ….
    2.1 Описание технологической схемы производства азофоски….
    2.2 Внесенные изменения по сравнению с аналогом их обоснование ….
    2.3 Техническая характеристика сырья….
    3 РАСЧЕТ ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ….
    3.1 Расчет материального баланса….
    3.2 Расчет вихревого контактного устройства нижней ступени….
    3.3. Расчет переливных устройств….
    3.4 Расчет штуцеров….
    3.5 Расчет теплового баланса….
    3.6 Механический расчет…
    3.7 Расчет фильтрующих элементов….
    4 ТЕХНИКО-ЭКОНИЧЕСКИЕ ПОКАЗАТЕЛИ….
    5 ТЕХНОЛОГИЧЕСКАЯ БЕЗОПАСНОСТЬ….
    ЗАКЛЮЧЕНИЕ….
    СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ….
  • Курсовая работа:

    Производство серной кислоты по методу мокрого катализа

    23 страниц(ы) 

    Введение 3
    1. Теоретическая часть 4
    1.1. Актуальность изучаемой проблемы 4
    1.2. Сырье, полуфабрикаты, вспомогательный материалы 6
    1.3. Краткая историческая справка 7
    1.4. Параметры, влияющие на процесс 9
    1.5. Технологическая схема производства 10
    1.6. Основной аппарат технологической схемы (реактор) 12
    2. Технологический расчет 13
    2.1.Материальный баланс 13
    2.2. Технико-экономические показатели 15
    3. Пути снижения себестоимости готового продукта 18
    4. Повышение качества готового продукта 19
    5. Совершенствование процесса 20
    Заключение 22
    Список литературы 23
  • Курсовая работа:

    Регенерация кислотных смесей и концентрирования слабой азотной кислоты

    78 страниц(ы) 

    ВВЕДЕНИЕ
    1. Аналитическая часть
    2. Расчетно-технологическая часть
    2.1. Описание технологической схемы
    2.2. Стандартизация. Технологическая характеристика сырья
    2.3 Свойства готовых продуктов, сырья и полуфабрикатов.
    2.4. Химизм основных и побочных реакций
    2.5. Расчет материального баланса отделения концентрирования HNO3
    2.6. Расчет теплового баланса
    3. Технико-технологическая часть
    3.1. Выбор и расчет производительности основного и вспомогательного оборудования технологической схемы
    3.2 Расчет количества аппаратов
    4. Выбор и обоснование схемы автоматизации производственного процесса
    5. Безопасность и экологичность проекта.
    6. Строительно-монтажная схема здания цеха и компоновка оборудования
    Заключение
    Список использованных источников

  • Дипломная работа:

    Разработка вихревого абсорбера очистки газов после скруббера-нейтрализатора в производстве аммиачной селитры (АС – 60)

    50 страниц(ы) 

    Реферат 4
    Введение 5
    1. Литературный обзор 6
    1.1. Основные физико-химические свойства и константы
    аммиачной селитры 6
    1.1.1. Основные свойства нитрата аммония 6
    1.1.2. Кристаллические формы 7
    1.1.3. Растворимость аммиачной селитры 7
    1.1.4. Гигроскопичность и слеживаемость 9
    1.1.5. Применение добавок 11
    1.2. Производство аммиачной селитры 26
    1.2.1. Сыръе для получения аммиачной селитры 26
    1.2.2. Основные стадии производства т 27
    1.3. Агрегаты производства аммиачной селитры 37
    1.3.1. Принципиальная схема агрегата АС – 67 38
    1.3.2. Принципиальная схема агрегата АС – 72 41
    1.3.3. Принципиальная схема агрегата АС – 72М 43
    1.3.4. Сравнительные таблицы агрегатов АС 45
    2. Расчетная часть 48
    2.1. Механический расчет 48
    2.1.1. Расчет толщины стенок 48
    2.1.2. Расчет толщины крышек и днищ 48
    2.1.3. Расчет фланцевого соединения 49
    2.1.4. Расчет опор аппарата 55
    2.2. Расчет фильтрующих элементов 57
    2.3. Расчет вихревого контактного устройства 58
    2.4. Материальный баланс 59
    2.5. Расчет переливных устройств 63
    3. Выводы по работе 64
    Список использованной литературы 65
    Приложение 67

Не нашли, что искали?

Воспользуйтесь поиском по базе из более чем 40000 работ

Наши услуги
Дипломная на заказ

Дипломная работа

от 8000 руб.

срок: от 6 дней

Курсовая на заказ

Курсовая работа

от 1500 руб.

срок: от 3 дней

Отчет по практике на заказ

Отчет по практике

от 1500 руб.

срок: от 2 дней

Контрольная работа на заказ

Контрольная работа

от 100 руб.

срок: от 1 дня

Реферат на заказ

Реферат

от 700 руб.

срок: от 1 дня

Другие работы автора
  • Курсовая работа:

    Расчет и подбор жаровни вращающейся электрической

    23 страниц(ы) 

    Введение….
    Литературный обзор….
    Часть 1 Описание группы оборудования….
    Часть 2 Описание конкретной группы оборудования для жарки….
    2.1 Жаровня ВЖШЭ- 675….
    2.2 Оладиепечка МПО- 350 …
    2.3 Автоматический блинный аппарат С3…
    Часть 3 Описание принципа работы….
    3.1 Описание принципа работы вращающейся жаровни ЖВЭ-720….
    3.2 Правила эксплуатации и техники безопасности…
    3.3 Расчет вращающейся жаровни …
    Заключение….
    Список литературы….
    Ведомость технического проекта….
  • Курсовая работа:

    Проектирование рабочей лемешно-отвальной поверхности

    37 страниц(ы) 

    ВВЕДЕНИЕ 2
    1. ИСХОДНЫЕ ДАННЫЕ К ПРОЕКТИРОВАНИЮ 4
    2. ОБОСНОВАНИЕ ОСНОВНЫХ ПАРАМЕТРОВ ЛЕМЕШНО-ОТВАЛЬНОЙ ПОВЕРХНОСТИ 5
    3. ПРОЕКТИРОВАНИЕ РАБОЧЕЙ ПОВЕРХНОСТИ ПЛУГА 9
    3.1. Построение профиля борозды 10
    3.2 Построение фронтальной проекции рабочей поверхности (лобовой контур) 11
    3.3 Расчет параметров и построение направляющей кривой 13
    3.4 Расчет промежуточных значений углов у наклона образующих к стенке борозды 18
    3.5 Построение горизонтальной проекции лемешно-отвальной поверхности 22
    3.6 Построение сечений поверхности продольно и поперечно-вертикальными плоскостями 28
    3.7 Построение развертки отвала 30
    4 ВЫБОР ОСНОВНЫХ РАЗМЕРОВ ПЛУГА 31
    5 ПРИСОЕДИНЕНИЕ ПЛУГА К ТРАКТОРУ 32
    6 СИЛЫ, ДЕЙСТВУЮЩИЕ НА ПОЛУНАВЕСНОЙ ПЛУГ 33
    ЗАКЛЮЧЕНИЕ 35
    СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 36
  • Задача/Задачи:

    ЗАДАЧИ ПАВЛОВ РОМАНКОВ РАЗДЕЛ 4 Теплопередача

    1 страниц(ы) 

    4.1. Во сколько раз увеличится термическое сопротивление стенки стального змеевика, свернутого из трубы диаметром 38х2,5 мм, если покрыть ее слоем эмали толщиной 0,5 мм? Считать стенку плоской. Коэффициент теплопроводности эмали 1,05 Вт/(м.К).
    4.2. Паропровод длиной 40 м, диаметром 51x2,5 мм покрыт слоем изоляции толщиной 30 мм; температура наружной поверхности изоляции t=45°С, внутренней tг = 175°С. Определить количество теплоты, теряемое паропроводом в 1 ч. Коэффициент теплопроводности изоляции λ = 0,116 Вт/(м-К).
    4.3. Стальная труба диаметром 60x3 мм изолирована слоем пробки толщиной 30 мм и сверху еще слоем совелита (85 % магнезии + 15% асбеста) толщиной 40мм. Температура стенки трубы -110°С, а наружной поверхности изоляции 10 °С. Вычислить часовую потерю холода с 1 м длины трубы.
    4.4. Как изменится потеря холода в условиях предыдущей задачи, если внутренний слой сделать совелитовым (б = 40 мм), а наружный - пробковым (δ = 30 мм)?
    4.5. Найти температуру внутренней поверхности обмуровки аппарата (рис. 4.19), если температура на наружной поверхности ее 35 °С. Толщина обмуровки 260 мм. Термометр, заделанный на глубину 50 мм от наружной поверхности, показывает температуру 70 °С.
    4.6. Вычислить коэффициент теплопроводности для: а) жидкого хлороформа при t = 20 °С; б) сернистого газа при t = 160 °С и абсолютном давлении 1 кгс/сма (~0,1 МПа); в) 25% водного раствора хлористого кальция при t= 30 °С.
    4.7. Необходимо испарять 1600 кг/ч жидкости, кипящей при t= 137°С и поступающей в испаритель при этой температуре. Удельная теплота испарения жидкости r = 377•108 Дж/кг. Температура греющего пара должна быть не ниже 150 °С. Определить расход греющего пара: а) сухого насыщенного, риаб = 4 кгс/сма (~0,4 МПа); б) перегретого до 250 °С, ризб = 4 кгс/см2 (~0,4 МПа); в) перегретого до 250°С, риаб = 3 кгс/смя (~0,3 МПа). Удельная теплоемкость перегретого пара 2,14-103 Дж/(кг-К).
    Изобразить процессы изменения состояния греющего пара на диаграмме Т - S. Конденсат греющего пара отводится при температуре конденсации.
    4.8. До какой температуры будут нагреты глухим паром 2 т раствора хлористого кальция, если расход греющего пара (ра6с = 2 кгс/сма, т. е. ~0,2 МПа) за 2,5 ч составил 200 кг, а расход теплоты на нагрев аппарата и потери теплоты в окружающую среду составляют в среднем 2030 Вт? Начальная температура раствора 10 °С. Удельная теплоемкость раствора 2,5 х 103 Дж/(кг К).
    4.9. Определить количество передаваемой теплоты в противоточном конденсаторе, в котором конденсируется 850 кг/ч пара сероуглерода под атмосферным давлением. Пар сероуглерода поступает в конденсатор с температурой 90 °С. Жидкий сероуглерод выхолит из конденсатора при температуре на в °С ниже температуры конденсации. Удельная теплоемкость пара сероуглерода 0,67.103 Дж/(кг-К).
    4.10. В кожухотрубчатый конденсатор поступает 120 кг/ч сухого насыщенного пара диоксида углерода под давлением Рабе = 60 кгс/см2 (~6,0 МПа). Жидкий диоксид углерода выходит из конденсатора под тем же давлением при температуре конденсации. Принимая разность температур диоксида углерода и воды на выходе воды из конденсатора 5 К, определить необходимый расход воды, если она поступает в конденсатор с температурой 10 °С.
    4.11. Колонна для ректификации жидкого воздуха покрыта слоем тепловой изоляции из шлаковой ваты толщиной 250 мм. Температура жидкости внутри колонны -190 °С, температура воздуха в помещении 20 °С. Какое количество теплоты может проникать из окружающего воздуха в колонну через 1 ма поверхности, если пренебречь термическими сопротивлениями со стороны жидкости, окружающего воздуха и металлической стенки колонны?
    4.12. Как изменится коэффициент теплопередачи в аппарате, если заменить стальные трубы диаметром 38x2,5 мм на медные такого же размера: а) в паровом калорифере для воздуха, в котором aвозд = 41 Вт/(м8.К), агр. пара = 11600 Вт/(м2-К); б) в выпарном аппарате, в котором араств = 2320 Вт/(ма-К), агр. пара = 11600 Вт/(мг-К)? Загрязнений поверхности не учитывать.
  • Курсовая работа:

    Проектирование овощерезки МУ-1000

    44 страниц(ы) 

    Введение 3
    1 Анализ современных машин и аппаратов аналогического назначения и технико-экономическое обоснование темы проекта 5
    1.1 Назначение овощерезательного оборудования, классификация 5
    1.2 Современные конструкции картофелеочистительных машин 7
    1.3 Технико-экономическое обоснование темы проекта 21
    1.4 Значение проекта 22
    2 Описание модернизированной конструкции. 24
    2.1 Назначение и область применения 24
    2.2 Описание конструкции и принцип действия 25
    2.3 Техническая характеристика. 26
    3 Расчеты, подтверждающие работоспособность конструкции 27
    3.1 Технологические расчеты 27
    3.2 Кинематические расчеты 28
    3.3 Расчет потребной мощности 31
    3.4 Расчеты на прочность. 32
    4 Мероприятия по охране труда и техники безопасности при обслуживании оборудования 41
    Заключение 43
    Список используемой литературы 44
  • Задача/Задачи:

    Павлов Романков раздел 11 Глубокое охлаждение

    2 страниц(ы) 

    11.1. Вычислить холодильный коэффициент и мощность, потребляемую холодильной установкой, работающей по циклу Карно, если ее холодопроизводительность 6400 Вт при температуре испарения -10°С. Температура конденсации 22 °С.
    11.2. Найти минимальную затрату работы (по циклу Карно) и расход воды в конденсаторе при выработке 100 кг/ч льда из воды, имеющей температуру 0 °С. Хладагент испаряется при -5°С, а конденсируется при 25°С. Вода в конденсатор подается при 12 СС, а уходит при 20 СС. Удельная теплота замерзания воды 335 кДж/кг.
    11.3. Определить удельную холодопроизводительность хладагента и холодильный коэффициент цикла для: а) аммиака; б) диоксида углерода и в) дифтордихлорметана СF2Сl2. Температура испарения - 15 0С, температура конденсации 300С. Цикл сухой, переохлаждение жидкости перед дросселированием отсутствует.
    11.4. Вычислить теоретический холодильный коэффициент углекислотной холодильной установки, если температура конденсации 20°С, а температура испарения -40°С. Цикл сухой, переохлаждение жидкости перед дросселированием отсутствует.
    11.5. Сравнить теоретические холодильные коэффициенты аммиачной компрессионной холодильной установки, работающей при температуре испарения -20 °С и температуре конденсации 30 °С: а) для цикла Карно; б) для реального влажного цикла; в) для сухого цикла без переохлаждения жидкого аммиака; г) для сухого цикла с переохлаждением до 25 СС жидкого аммиака после конденсации.
    11.6. По условиям предыдущей задачи сравнить теоретические холодильные коэффициенты для фреоновой холодильной установки, пользуясь диаграммой i - lg р (рис. XXVIII).
    Задача 11.7 В конденсаторе аммиачной холодильной установки 20 м3/ч воды нагревается на 6 К. Теоретическая мощность, затрачиваемая компрессором, 23,5 кВт. Определить холодопроизводительность установки и холодильный коэффициент.
  • Курсовая работа:

    Расчет и подбор машины взбивальной

    23 страниц(ы) 

    Введение 4
    Литературный обзор 5
    Часть 1 Описание группы оборудования 5
    1.1 Классификация технологических машин 6
    Часть 2 Описание конкретной группы овощерезательных машин 9
    2.1 Взбивальная машина МВ-35М 10
    Часть 3 Описание принципа работы 17
    3.1 Описание принципа действия машины МВ-35 17
    3.2 Правила эксплуатации и техники безопасности 20
    3.3 Расчет машины взбивальной МВ-35 20
    Заключение 22
    Список литературы 23
  • Курсовая работа:

    Проектирование мясорубки МИМ-105

    45 страниц(ы) 

    Содержание 2
    Введение 3
    1 Анализ современных конструкций по измельчению мяса 4
    1.1 Назначение и классификация 4
    1.2 Современные конструкции мясорубок 5
    Машина МИМ – 105М 11
    2. Описание модернизированной конструкции 20
    2.1 Назначение и область применения 20
    На основании базовой модели машины для измельчения мяса МИМ-105 разработать конструкцию насадки, которая позволит использовать мясорубку как соковыжималку. Область применения: для измельчения мяса, рыбы, получения сока из фруктов и овощей. 20
    2.2 Описание конструкции и принципа действия 20
    2.3 Техническая характеристика 21
    3. Расчеты, подтверждающие работоспособность конструкции 23
    3.1 Технологические расчеты 23
    3.2 Кинематические расчеты 24
    3.3 Расчет потребной мощности 27
    3.4 Расчеты на прочность 29
    3.5 Теплотехнический расчет 33
    4. Мероприятия по охране труда и техники безопасности при обслуживании оборудования 36
    4.1 Условия эксплуатации оборудования и характеристика санитарно-гигиенических условий труда обслуживающего персонала. 36
    4.2 Правила охраны труда при обслуживании проектируемого оборудования. 37
    Заключение 43
    Список использованной литературы 44
  • Задача/Задачи:

    ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 2 Перемещение жидкостей

    1 страниц(ы) 

    2.1. Насос перекачивает 30%-ную серную кислоту. Показание манометра на нагнетательном трубопроводе 1,8 кгссм2 (~0,18 МПа), показание вакуумметра (разрежение) на всасывающем трубопроводе перед насосом 29 мм рт. ст. Манометр присоединен на 0,5 м выше вакуумметра. Всасывающий и нагнетательный трубопроводы одинакового диаметра. Какой напор развивает насос
    2.2. Насос перекачивает жидкость плотностью 960 кгм3 из резервуара с атмосферным давлением в аппарат, давление в котором составляет риаб = 37 кгссм2, или ~3,7 МПа (см. рис. 2.1). Высота подъема 16 м. Общее сопротивление всасывающей и нагнетательной линий 65,6 м. Определить полный напор, развиваемый насосом.
    2.3. Определить к.п.д. насосной установки. Насос подает 380 дм3мин мазута относительной плотности 0,9. Полный напор 30,8 м. Потребляемая двигателем мощность 2,5 кВт.
  • Курсовая работа:

    Спроектировать редуктор зубчатый цилиндрический двухступенчатый соосный с внутренним зацеплением тихоходной ступени

    41 страниц(ы) 

    Техническое задание на курсовое проектирование 2
    1 Кинематический расчет и выбор электродвигателя 3
    2 Выбор материалов и определение допускаемых напряжений 6
    3 Расчет тихоходной ступени привода 8
    3.1 Проектный расчет 8
    3.2 Проверочный расчет по контактным напряжениям 11
    3.3 Проверочный расчет зубьев на изгиб 11
    4 Расчет быстроходной ступени привода 13
    5 Проектный расчет валов редуктора 16
    5.1 Расчет тихоходного вала редуктора 17
    5.2 Расчет быстроходного вала редуктора 21
    5.3 Расчет промежуточного вала редуктора 25
    6 Подбор и проверочный расчет шпонок 30
    6.1 Шпонки быстроходного вала 30
    6.2 Шпонки промежуточного вала 31
    6.1 Шпонки тихоходного вала 31
    7 Проверочный расчет валов на статическую прочность 33
    8 Выбор и проверочный расчет подшипников 34
    9. Компоновка привода 36
    10 Выбор масла, смазочных устройств 38
    Список использованной литературы 40
  • Курсовая работа:

    Проектирование картофелеочистительной машины МОК-125

    39 страниц(ы) 

    Введение 3
    1 Анализ современных машин и аппаратов аналогического назначения и технико-экономическое обоснование темы проекта 4
    1.1 Назначение картофелеочистительного оборудования, классификация 4
    1.2 Современные конструкции картофелеочистительных машин 8
    1.3 Технико-экономическое обоснование темы проекта 15
    1.4 Значение проекта 15
    2 Описание модернизированной конструкции. 17
    2.1 Назначение и область применения 17
    2.2 Описание конструкции и принцип действия 17
    2.3 Техническая характеристика. 20
    3 Расчеты, подтверждающие работоспособность конструкции 22
    3.1 Технологические расчеты 22
    3.2 Кинематические расчеты 23
    3.3 Расчет потребной мощности 25
    3.4 Расчеты на прочность. 26
    4 Мероприятия по охране труда и техники безопасности при обслуживании оборудования 35
    Заключение 38
    Список используемой литературы 39