СтудСфера.Ру - помогаем студентам в учёбе

У нас можно недорого заказать курсовую, контрольную, реферат или диплом

ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 6 Абсорбция - Задача/Задачи №33692

«ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 6 Абсорбция» - Задача/Задачи

  • 2 страниц(ы)

Содержание

Введение

Выдержка из текста работы

Заключение

Список литературы

Примечания

фото автора

Автор: Pingvin78

Содержание

6.1. Смешаны два равных объема бензола и нитробензола. Считая, что объем жидкой смеси равен сумме объемов компонентов, определить плотность смеси, относительную массовую концентрацию X нитробензола и его объемную мольную концентрацию Сх.

6.2. Состав жидкой смеси: хлороформа 20%, ацетона 40%, сероуглерода 40%. Проценты мольные. Определить плотность смеси, считая, что изменения объема при смешении не происходит.

6.3. Воздух насыщен паром этилового спирта. Общее давление воздушно-паровой смеси 600 мм рт. ст., температура 60 °С. Принимая оба компонента смеси за идеальные газы, определить относительную массовую концентрацию V этилового спирта в смеси и плотность смеси.

6.4. Газ состава: водород 26%, метан 60%, этилен 14% (проценты мольные) имеет давление ра6с = 30 кгс/см2 и температуру 20 °С. Считая компоненты смеси идеальными газами, определить их объемные массовые концентрации Сy (в кг/м3).

6.5. Показать, что в формуле

при любых значениях Мв и МА у не может быть отрицательным.

6.6. В условиях примера 6.3 (а) определить движущую силу процесса массоперехода в начальный момент времени по газовой и по жидкой фазе в объемных концентрациях, мольных и массовых.

6.7. Пар бинарной смеси хлороформ - бензол, содержащий 50% хлороформа и 50% бензола, вступает в контакт с жидкостью, содержащей 44% хлороформа и 56% бензола (проценты мольные). Давление атмосферное. Определить: а) из какой фазы в какую будут переходить хлороформ и бензол; б) движущую силу процесса массопередачи по паровой и по жидкой фазе на входе пара в жидкость (в мол. долях). Данные о равновесных составах см. в табл. ХLVII.


Введение

6.14. В насадочном абсорбере производится поглощение пара метилового спирта водой из газа под атмосферным давлением при средней температуре 27 °С. Содержание метилового спирта в газе, поступающем в скруббер, 100 г на 1 м3 инертного газа (считая объем газа при рабочих условиях). На выходе из скруббера вода имеет концентрацию 67% от максимально возможной, т. е. от равновесной с входящим газом. Уравнение растворимости метилового спирта в воде в относительных мольных концентрациях: Y* = 1,15X. Извлекается водой 98% от исходного количества спирта. Коэффициент массопередачи: KX = 0,5 кмоль спирта /(м2•ч кмоль спирта/кмоль воды). Расход инертного газа 1200 м3/ч (при рабочих условиях). Абсорбер заполнен насадкой из керамических колец с удельной поверхностью 190 м2/м3. Коэффициент смачивания насадки φ = 0,87. Фиктивная скорость газа в абсорбере ω = 0,4 м/с. Определить расход воды и требуемую высоту слоя насадки.

6.15. В скруббер диаметром 0,5 м подается 550 м3/ч (при 760 мм рт. ст. и 20 °С) воздуха, содержащего 2,8% (об.) аммиака, который поглощается водой под атмосферным давлением. Степень извлечения аммиака 0,95. Расход воды на 40% больше теоретически минимального. Определить: 1) расход воды; 2) общее число единиц переноса nоу; 3) высоту слоя насадки из керамических колец 50X50X5 мм. Коэффициент массопередачи: Ку = 0,001 кмоль аммиака/(м2-с кмоль аммиака/кмоль воздуха). Данные о равновесных концентрациях жидкости и газа взять из примера 6.10. Коэффициент смоченности насадки φ = 0,9.

6.16. Вывести формулу для определения высоты единицы переноса в насадочном абсорбере для жидкой фазы hх из критериального уравнения (6.46).

6.17. Воздух с примесью аммиака пропускается через орошаемый водой скруббер, заполненный насадкой из колец с удельной поверхностью 89,5 м2/м3. Свободный объем насадки 0,79 м3/м3. Температура абсорбции 28 °С, абсолютное давление 1 кгс/сма. Среднее содержание аммиака в газовой смеси 5,8% (об.). Массовая скорость газа, отнесенная к полному сечению скруббера, 1,1 кг/(м2-с). Определить коэффициент массоотдачи для газа, считая, что скруббер работает при пленочном режиме.


Выдержка из текста работы

6.18. Рассчитать коэффициент массоотдачи от жидкой фазы в насадочном абсорбере, в котором производится поглощение диоксида углерода водой при температуре 20 °С. Плотность орошения 60 м3/(м2-ч). Насадка - керамические кольца 35х35х4 мм навалом. Коэффициент смоченности насадки φ = 0,86.

6.19. Определить коэффициент массоотдачи для газа в скруббере при поглощении пара бензола из коксового газа по следующим данным: насадка хордовая из реек 12,5X100 мм с расстоянием между рейками b = 25 мм (для такой насадки 4dэ = 2b = 0,05 м); скорость газа, считая на полное сечение скруббера, 0,95 м/с; плотность газа 0,5 кг/м3; динамический коэффициент вязкости газа 0,013 мПа с; коэффициент диффузии бензола в газе 16-10-8 м2/с. Режим считать пленочным.

6.20. Определить диаметр и высоту тарельчатого абсорбера для поглощения водой аммиака из воздушно-аммиачной смеси при атмосферном давлении и температуре 20 °С. Начальное содержание аммиака в газовой смеси 7% (об.). Степень извлечения 90%. Расход инертного газа (воздуха) 10000 м3/ч (при рабочих условиях). Линию равновесия считать прямой, ее уравнение в относительных массовых концентрациях: Y* = 0,61X. Скорость газа в абсорбере (фиктивная) 0,8 м/с. Расстояние между тарелками 0,6 м. Средний к. п. д. тарелок 0,62. Коэффициент избытка поглотителя φ = 1.3.

6.21. По условиям предыдущей задачи определить: 1) высоту насадочного абсорбера с насадкой из керамических колец 50ХХ50х5 мм, приняв hу - высоту слоя насадки, эквивалентную теоретической тарелке (ВЭТТ), равной 0,85 м; 2) величину коэффициента массопередачи в этом насадочном абсорбере К.у кг аммиака /(м2-с кмоль аммиака/кмоль воздуха) насадки гр равным 0,9.

6.22. По данным контрольных задач 6.20 и 6.21 определить высоту слоя насадки через общее число единиц переноса nоу и высоту единицы переноса (ВЕП) h0у.

6.23. Абсорбер для улавливания паров бензола из парогазовой смеси орошается поглотительным маслом с мольной массой 260 кг/кмоль. Среднее давление в абсорбере рабс = 800 мм рт. ст., температура 40 °С. Расход парогазовой смеси 3600 м3/ч (при рабочих условиях). Концентрация бензола в газовой смеси на входе в абсорбер 2% (об.) извлекается 95% бензола. Содержание бензола в поглотительном масле, поступающем в абсорбер после регенерации, 0,2% (мол.). Расход поглотительного масла в 1,5 раза больше теоретически минимального. Для расчета равновесных составов принять, что растворимость бензола в м:асле определяется законом Рауля. При концентрациях бензола в жидкости до X = 0,1 кмоль бензола/кмоль масла равновесную зависимость Y* =f(X) считать прямолинейной.

Определить: 1) расход поглотительного масла в кг/ч; 2) концентрацию бензола в поглотительном масле, выходящем из абсорбера; 3) диаметр и высоту насадочного абсорбера при скорости газа в нем (фиктивной) 0,5 м/с и высоте единицы переноса (ВЕП) hоу = 0,9 м; 4) высоту тарельчатого абсорбера при среднем к. п. д. тарелок 0,67 и расстоянии между тарелками 0,4 м.


Заключение

6.24. В насадочном абсорбере диаметром 1 м диоксид серы поглощается водой из воздуха. Начальное содержание SО2 в поступающей смеси 7% (об.). Степень поглощения 0,9. На выходе из абсорбера вода содержит 0,0072 кг SО2/кг воды. Коэффициент массопередачи в абсорбере К.у = 0,005 кг SО2 /(м2-с кмоль SО2/кмоль воздуха)

Насадка из керамических колец 50x50x5 мм. Коэффициент смоченкости насадки φ = 1. Высота единицы переноса hоу = 1,17 м. Определить расход воды в абсорбере.

6.25. В абсорбере под атмосферным давлением при температуре 20 °С поглощается из парогазовой смеси 300 кг бензола в 1 ч. Начальное содержание пара бензола в парогазовой смеси 4% (об.). Степень извлечения бензола 0,85. Жидкий поглотитель, поступающий в абсорбер после регенерации, содержит 0,0015 кмоль бензола/кмоль поглотителя. Фиктивная скорость газа в абсорбере 0,9 м/с. Уравнение линии равновесия: Y* =0,2Х, где Y* и X выражены соответственно в кмоль бензола/кмоль инертного газа и кмоль бензола/кмоль поглотителя. Коэффициент избытка поглотителя φ = 1,4. Определить диаметр абсорбера и концентрацию бензола в поглотителе, выходящем из абсорбера.


Список литературы

Примеры и задачи по курсу процессов и аппаратов химической технологии /Учебное пособие/, К.Ф. Павлов, П.Г. Романков, А.А. Носков, 9-ое изд. перераб. и дополнен. Л. Химия,1987-575с.


Примечания

Все задачи решены (цена за одну задачу)

Тема: «ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 6 Абсорбция»
Раздел: Технология
Тип: Задача/Задачи
Страниц: 2
Цена: 150 руб.
Нужна похожая работа?
Закажите авторскую работу по вашему заданию.
  • Цены ниже рыночных
  • Удобный личный кабинет
  • Необходимый уровень антиплагиата
  • Прямое общение с исполнителем вашей работы
  • Бесплатные доработки и консультации
  • Минимальные сроки выполнения

Мы уже помогли 24535 студентам

Средний балл наших работ

  • 4.89 из 5
Узнайте стоимость
написания вашей работы
Похожие материалы
  • Задача/Задачи:

    ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 8 Экстракция

    2 страниц(ы) 

    8.1. Построить треугольную диаграмму равновесия для системы вода - уксусная кислота - этиловый эфир при 25 °С, пользуясь данными табл. 8.4. Сравнить полученную диаграмму с диаграммой X, Y - z, Z. (см. пример 8.8).
    8.2. Определить состав и количество сосуществующих фаз, на которые расслаивается смесь 10 кг воды, 5 кг этилового эфира и 5 кг уксусной кислоты. При удалении какого количества этилового эфира эта смесь перестанет расслаиваться?
    8.3. Уксусная кислота экстрагируется из водного раствора, содержащего ее 15% (масс.) при 25 °С. Масса исходной смеси 1200 кг. Определить состав и количество конечных продуктов после отгонки растворителя, если экстракция производится чистым эфиром в перекрестном токе. Процесс ведется в две ступени при отношении массы растворителя к массе обрабатываемой смеси 1,5.
    8.4. Уксусная кислота экстрагируется в противотоке этиловым эфиром из водного раствора, содержащего 20% (масс.) кислоты. Определить необходимое количество растворителя на 1000 кг/ч исходной смеси и число теоретических ступеней экстрагирования, если экстракт должен содержать 60% (масс.), а рафинат - не более 2% (масс.) кислоты (после отгонки растворителя).
  • Задача/Задачи:

    ЗАДАЧИ ПАВЛОВ РОМАНКОВ РАЗДЕЛ 3 Гидромеханические процессы

    1 страниц(ы) 

    3.1. Найти соотношение диаметров частиц свинцового блеска (р = 7800 кг/м3) и кварца (р = 2600 кг/м3), осаждающихся с одинаковой скоростью: а) в воздухе; б) в воде, считая, что осаждение происходит при Rе < 0,2.
    3.2. С какой скоростью будут осаждаться шарообразные частицы кварца (р = 2600 кг/м3) диаметром 10 мкм; а) в воде при 15 °С; б) в воздухе при 15 и 500 °С?
    3.3. Какой должна быть скорость воздуха в вертикальной трубе пневматической сушилки, чтобы обеспечить перемещение кристаллов плотностью 2000 кг/м3 с наибольшим диаметром 3 мм? Температура воздуха 60°С. Скорость воздуха должна быть на 25% больше скорости витания частиц.
    3.4. Рассчитать скорость восходящего потока воздуха в воздушном сепараторе, необходимую для отделения мелких (d < 1 мм) частиц апатита от более крупных. Температура воздуха 20 °С. Плотность апатита 3230 кг/м3.
    3.5. Каким должно быть расстояние между полками пылевой камеры (см. рис. 3.9), чтобы в ней оседали частицы колчеданной пыли диаметром более 15 мкм? Остальные условия такие же, как в примере 3.6.
  • Задача/Задачи:

    ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 1 Основы гидравлики

    1 страниц(ы) 

    1.3. Состав продуктов горения 1 кг коксового газа (в кг)) СО2 - 1,45; М2 =8,74; Н2О-1,92. Найти объемный состав продуктов горения.
    1.4. Разрежение в осушительной башне сернокислотного завода измеряется U-образным тягомером наполненным серной кислотой плотностью 1800 кг/м3. Показание тягомера 3 см. Каково абсолютное давление в башне, выраженное в Па, если барометрическое давление составляет 750 мм рт. ст.?
    1.5. Манометр на трубопроводе, заполненном жидкостью, показывает давление 0,18 кгс/см2. На какую высоту Н над точкой присоединения манометра поднимается в открытом пьезометре жидкость, находящаяся в трубопроводе, если эта жидкость: а) вода, б) четыреххлористый углерод (рис. 1.23)?

    1.6. Высота уровня мазута в резервуаре 7,6 м (рис. 1.24). Относительная плотность мазута 0,96. На высоте 800 мм от дна в резервуаре имеется круглый лаз диаметром 760 мм, крышка которого прикрепляется болтами диаметром 10 мм. Принимая для болтов допустимое напряжение на разрыв 700 кгс/см2, определить необходимое число болтов. Определить также давление мазута на дно резервуара.

    1.7. На малый поршень диаметром 40 мм ручного гидравли­ческого пресса (рис. 1.25) действует сила 589 Н (60 кгс). Пренебре­гая потерями, определить силу, действующую на прессуемое тело, если диаметр большого поршня 300 мм.

    1.8. Динамический коэффициент вязкости жидкости при 50 °С равняется 30 мПа-с. Относительная плотность жидкости 0,9. Определить кинематический коэффициент вязкости.
  • Задача/Задачи:

    ЗАДАЧИ ПАВЛОВ РОМАНКОВ РАЗДЕЛ 4 Теплопередача

    1 страниц(ы) 

    4.1. Во сколько раз увеличится термическое сопротивление стенки стального змеевика, свернутого из трубы диаметром 38х2,5 мм, если покрыть ее слоем эмали толщиной 0,5 мм? Считать стенку плоской. Коэффициент теплопроводности эмали 1,05 Вт/(м.К).
    4.2. Паропровод длиной 40 м, диаметром 51x2,5 мм покрыт слоем изоляции толщиной 30 мм; температура наружной поверхности изоляции t=45°С, внутренней tг = 175°С. Определить количество теплоты, теряемое паропроводом в 1 ч. Коэффициент теплопроводности изоляции λ = 0,116 Вт/(м-К).
    4.3. Стальная труба диаметром 60x3 мм изолирована слоем пробки толщиной 30 мм и сверху еще слоем совелита (85 % магнезии + 15% асбеста) толщиной 40мм. Температура стенки трубы -110°С, а наружной поверхности изоляции 10 °С. Вычислить часовую потерю холода с 1 м длины трубы.
    4.4. Как изменится потеря холода в условиях предыдущей задачи, если внутренний слой сделать совелитовым (б = 40 мм), а наружный - пробковым (δ = 30 мм)?
    4.5. Найти температуру внутренней поверхности обмуровки аппарата (рис. 4.19), если температура на наружной поверхности ее 35 °С. Толщина обмуровки 260 мм. Термометр, заделанный на глубину 50 мм от наружной поверхности, показывает температуру 70 °С.
    4.6. Вычислить коэффициент теплопроводности для: а) жидкого хлороформа при t = 20 °С; б) сернистого газа при t = 160 °С и абсолютном давлении 1 кгс/сма (~0,1 МПа); в) 25% водного раствора хлористого кальция при t= 30 °С.
    4.7. Необходимо испарять 1600 кг/ч жидкости, кипящей при t= 137°С и поступающей в испаритель при этой температуре. Удельная теплота испарения жидкости r = 377•108 Дж/кг. Температура греющего пара должна быть не ниже 150 °С. Определить расход греющего пара: а) сухого насыщенного, риаб = 4 кгс/сма (~0,4 МПа); б) перегретого до 250 °С, ризб = 4 кгс/см2 (~0,4 МПа); в) перегретого до 250°С, риаб = 3 кгс/смя (~0,3 МПа). Удельная теплоемкость перегретого пара 2,14-103 Дж/(кг-К).
    Изобразить процессы изменения состояния греющего пара на диаграмме Т - S. Конденсат греющего пара отводится при температуре конденсации.
    4.8. До какой температуры будут нагреты глухим паром 2 т раствора хлористого кальция, если расход греющего пара (ра6с = 2 кгс/сма, т. е. ~0,2 МПа) за 2,5 ч составил 200 кг, а расход теплоты на нагрев аппарата и потери теплоты в окружающую среду составляют в среднем 2030 Вт? Начальная температура раствора 10 °С. Удельная теплоемкость раствора 2,5 х 103 Дж/(кг К).
    4.9. Определить количество передаваемой теплоты в противоточном конденсаторе, в котором конденсируется 850 кг/ч пара сероуглерода под атмосферным давлением. Пар сероуглерода поступает в конденсатор с температурой 90 °С. Жидкий сероуглерод выхолит из конденсатора при температуре на в °С ниже температуры конденсации. Удельная теплоемкость пара сероуглерода 0,67.103 Дж/(кг-К).
    4.10. В кожухотрубчатый конденсатор поступает 120 кг/ч сухого насыщенного пара диоксида углерода под давлением Рабе = 60 кгс/см2 (~6,0 МПа). Жидкий диоксид углерода выходит из конденсатора под тем же давлением при температуре конденсации. Принимая разность температур диоксида углерода и воды на выходе воды из конденсатора 5 К, определить необходимый расход воды, если она поступает в конденсатор с температурой 10 °С.
    4.11. Колонна для ректификации жидкого воздуха покрыта слоем тепловой изоляции из шлаковой ваты толщиной 250 мм. Температура жидкости внутри колонны -190 °С, температура воздуха в помещении 20 °С. Какое количество теплоты может проникать из окружающего воздуха в колонну через 1 ма поверхности, если пренебречь термическими сопротивлениями со стороны жидкости, окружающего воздуха и металлической стенки колонны?
    4.12. Как изменится коэффициент теплопередачи в аппарате, если заменить стальные трубы диаметром 38x2,5 мм на медные такого же размера: а) в паровом калорифере для воздуха, в котором aвозд = 41 Вт/(м8.К), агр. пара = 11600 Вт/(м2-К); б) в выпарном аппарате, в котором араств = 2320 Вт/(ма-К), агр. пара = 11600 Вт/(мг-К)? Загрязнений поверхности не учитывать.
  • Задача/Задачи:

    ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 5 Выпаривание

    1 страниц(ы) 

    5.1. Рассчитать удельный расход сухого насыщенного водяного пара при выпаривании воды под атмосферным давлением и под вакуумом (разрежением) 0,8 кгс/см2. Абсолютное давление греющего водяного пара в обоих случаях рабс = 2 кгс/см2. Вода поступает на выпарку: а) при температуре 15 °С; б) подогретой до температуры кипения.
    5.2. Производительность выпарного аппарата по исходному раствору 2650 кг/ч. Концентрация исходного раствора 50 г/л воды. Концентрация выпаренного раствора 295 г на 1 л раствора. Плотность выпаренного раствора 1189 кг/м3. Найти производительность аппарата по выпаренному раствору.
    5.3. Как изменится производительность выпарного аппарата, если на стенках греющих труб отложится слой накипи толщиной 0,5 мм? Коэффициент теплопередачи К для чистых труб равен 1390 Вт/(м2-К). Коэффициент теплопроводности накипи λ = 1,16 Вт/(м.К).
    5.4. Производительность выпарного аппарата, обогреваемого насыщенным водяным паром с избыточным давлением ри;зб = 1,5 кгс/см2, необходимо повысить с 1200 до 1900 кг/ч (по разбавленному раствору). Выпаривание производится под атмосферным давлением, температура кипения раствора в аппарате 105°С, раствор подается на выпарку подогретым до температуры кипения. Определить, какого давления греющий пар надо подавать в аппарат. Тепловые потери не учитывать, коэффициент теплопередачи считать неизменным, так же как и конечную концентрацию раствора.
  • Курсовая работа:

    Методика решения нестандартных задач с целыми числами по дисциплине «Теория чисел»

    42 страниц(ы) 

    Введение 3
    §1. Представление целых чисел в некоторой форме 4
    §2. Уравнения первой степени с двумя неизвестными в целых числах 9
    §3. Уравнения второй степени с двумя неизвестными в целых числах 14
    §4. Разные уравнения с несколькими неизвестными в целых числах 16
    §5. Неравенства в целых числах 21
    §6 Нестандартные задачи с целыми числами в ЕГЭ (Задание С) 23
    Заключение 41
    Список литературы 42

Не нашли, что искали?

Воспользуйтесь поиском по базе из более чем 40000 работ

Наши услуги
Дипломная на заказ

Дипломная работа

от 8000 руб.

срок: от 6 дней

Курсовая на заказ

Курсовая работа

от 1500 руб.

срок: от 3 дней

Отчет по практике на заказ

Отчет по практике

от 1500 руб.

срок: от 2 дней

Контрольная работа на заказ

Контрольная работа

от 100 руб.

срок: от 1 дня

Реферат на заказ

Реферат

от 700 руб.

срок: от 1 дня

Другие работы автора
  • Дипломная работа:

    Разработка станции технического обслуживая на 11 постов в городе Перми

    140 страниц(ы) 

    ВВЕДЕНИЕ 5
    1 АНАЛИЗ ХОЗЯЙСТВЕННОЙ ДЕЯТЕЛЬНОСТИ СТО 7
    1.1 Организация технологических процессов ТО легковых автомобиле 16
    1.2 Выбор метода организации производства СТО 19
    1.3 Организация производственного процесса СТО 19
    1.4 Организация работ ТО и ТР легковых автомобилей 21
    2. ТЕХНОЛОГИЧЕСКИЙ РАСЧЕТ СТО 21
    2.1 Исходные данные 21
    2.2 Расчет годового объема работ СТО 31
    2.2.2 Расчёт числа автомобилей, обслуживаемых СТО 36
    2.2.3 Расчет годового объема уборочно-моечных работ 37
    2.2.4 Расчет годового объема работ по приемке и выдаче автомобилей 37
    2.2.5 Расчёт годового объема вспомогательных работ 38
    2.3 Распределение годовых объемов работ по зонам и цехам 39
    2.4 Расчет числа рабочих СТО 41
    2.5 Расчет числа постов и автомобиле-мест ожидания 46
    2.6 Расчет площадей помещений 49
    2.7 Расчёт площади СТО 56
    3 КОНСТРУКТОРСКАЯ ЧАСТЬ 58
    3.1 Анализ конструкций стендов для диагностики подвески лекговых автомобилей.58
    3.2 Описание стенда.64
    3.2.1 Методы диагностирования амортизаторов и подвески.70
    3.3 Расчет экцентрикового зажима.76
    3.4 Подбор электродвигателя.78
    3.6 Расчеты на прочность.81
    3.7 Редуктор шевронный.83
    3.8 Расчет на прочность валов.89
    3.9 Выбор смазки редуктора.97
    3.10 Проверка прочности шпоночного соединения.98
    3.11 Проверка долговечности подшипника.100
    3.12 Подбор муфты.101
    3.13 Монтаж стенда.101
    3.14 Техническое обслуживание стенда.102
    4. БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ. 104
    4.1 Безопасность жизнедеятельности.104
    4.1.1 Анализ условий и охрана труда на предприятии.104
    4.1.2 Требования безопасности при техническом обслуживании и ремонте автомобилей.108
    4.1.3 Мероприятия по выполнению требований безопасности.115
    4.2 Экологическая безопасность. 116
    4.2.1 Негативное воздействие предприятия на окружающую среду и его снижение.117
    4.2.2 Выбросы вредных и загрязняющих веществ в атмосферу.118
    4.2.3 Обращение с отходами.120
    4.2.4 Отчистка сточных вод от загрязнения.126
    5. ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ПРЕДПРИЯТИЯ 128
    5.1 Этапы развития производства 128
    5.2 Выбор метода экономической оценки инвестиций. 128
    5.3 Расчет срока окупаемости 130
    ЗАКЛЮЧЕНИЕ 139
    СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 140
  • Реферат:

    Оценка возможностей использования принципов " зеленой химии" в производстве этилена

    32 страниц(ы) 

    ВВЕДЕНИЕ 3
    1. Применение этилена 5
    2 Пиролиз этилена 8
    3. Способы получения этилена 13
    3.1 Непрерывный контактный пиролиз во взвешенном слое твердого теплоносителя. 13
    3.2 Непрерывный пиролиз в движущемся слое твердого теплоносителя. 15
    3.3 Каталитическое гидрирование ацетилена в этилен 17
    3.4 Окислительный пиролиз 19
    3.5 Пиролиз в трубчатых печах 22
    4. Принципы зеленой химии 24
    5 Современное технологическое оформление схемы получения этилена с использованием принципов зеленой химии 26
    ЗАКЛЮЧЕНИЕ 31
    СПИСОК ЛИТЕРАТУРЫ 32
  • Дипломная работа:

    Фаза стабилизации производства нитроцеллюлозы

    60 страниц(ы) 

    ВВЕДЕНИЕ 5
    1 АНАЛИТИЧЕСКАЯ ЧАСТЬ 7
    1.1 Историческая справка 7
    1.2 Характеристика нитроцеллюлозы 9
    1.3 Характеристика сырья 12
    2 РАСЧЕТНО-ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ 16
    2.1 Описание технологической схемы 16
    2.2 Расчет материального баланса 19
    2.3 Расчет количества основного и вспомогательного оборудования 22
    2.4 Тепловой расчет 24
    2.5 Энергетический расчет 28
    2.5.1 Расчет расхода электроэнергии для привода мешалки автоклава 28
    2.5.2 Расчет расхода пара для автоклава 28
    2.5.3 Расход воды в автоклавах 29
    2.6 Выбор конструкции аппаратов 30
    2.6.1 Автоклав 31
    2.6.2 Технологический процесс работы автоклава 32
    2.6.3 Нововведения в стадию стабилизации нитроцеллюлозы 35
    3. ТЕХНОЛОГИЧЕСКАЯ БЕЗОПАСНОСТЬ 40
    3.1 Техника безопасности 41
    3.2 Шум и вибрация 42
    3.4 Отопление и вентиляция 43
    3.5 Освещение 44
    3.6.Электробезопасность 45
    3.7 Молниезащита 45

    3.8 Требования безопасности, промышленной санитарии и пожарной безопасности 46
    4 ТЕХНИКО-ЭКОНОМИЧЕСКИЙ РАСЧЕТ 47
    ЗАКЛЮЧЕНИЕ 64
    СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 65

  • Контрольная работа:

    Составить схему контроля, сигнализации, регис¬трации расхода абсорбента, давления отвода очищенного газа и температуры газовой смеси.

    7 страниц(ы) 

    1. Составить схему контроля, сигнализации, регистрации расхода абсорбента, давления отвода очищенного газа и температуры газовой смеси.
    2. Выбрать из справочника приборы.
    3. Рассчитать среднеквадратичную погрешность контроля.
    4. Определить абсолютную и относительную погрешность на отметке 600куб.м/час; 0,24атм; 24°С.
    5. Составить схему автоматического регулирования расхода газовой смеси.
    6. Выбрать из справочника приборы.
    7. Выбрать тип регулятора, исходя из свойств объекта:
    запаздывание 40 с;
    постоянная времени 193с;
    коэффициент усиления 1,38.
    8. Рассчитать параметры настройки регулятора, если переходный процесс колебательный.
    9. Составить принципиальную электрическую схему дистанционного управления приводом компрессора.
    10. Предусмотреть автоматическую защиту привода от превышения температуры газовой смеси.
    11. Составить спецификацию на приборы и средства автоматизации.
    12. Оформление задания производить на листах А4 условные обозначения приборов выполнить согласно ГОСТ 21.404-85. (данные по приборам https://www.engineer-oht.ru).
  • Курсовая работа:

    Спроектировать и экономически обосновать производство раствора йода спиртового 5 %

    58 страниц(ы) 

    Реферат …
    Перечень сокращений и условных обозначений …
    Введение…
    1 Аналитическая часть
    1.1 Историческая справка о методах получения и использования продукта
    1.2 Выбор и обоснование метода производства. Химизм процесса…
    2. Расчётно-технологическая часть
    2.1 Описание технологической схемы узла алкилирования бензола пропиленом
    в присутствии катализатора трёххлористого алюминия…
    2.2 Техническая характеристика сырья, полуфабрикатов и продуктов…
    2.3 Материальный баланс производства…
    2.4 Выбор и технологический расчёт основного и вспомогательного оборудования…
    2.5 Тепловой расчёт….
    2.6 Механический расчёт оборудования….….
    2.7 Внесенные изменения по сравнению с аналогом и обоснование изменений вводимых в проект.…
    3 Экологичность проекта…
    Заключение…
    Список литературы…
    Спецификация….
  • Дипломная работа:

    Спроектировать сепаратор, действующий на установке комплексной подготовки газа Северо-Комсомольского месторождения, на стадии низкотемпературной сепарации, производительностью 700 млн. т/год.

    100 страниц(ы) 

    ВВЕДЕНИЕ
    1 Литературный обзор
    1.1 Установки низкотемпературной сепарации
    1.1.1 Основные факторы, влияющие на процесс НТС
    1.2. Сепарационное оборудование
    2 ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ
    2.1 Выбор и обоснование технологической схемы производства
    2.2 Характеристика сырья
    2.3 Установка низкотемпературной сепарации с блоком входного сепаратора
    2.4 Материальный баланс производства
    2.5 Расчет основного оборудования
    2.5.1 Выбор числа ступеней сепарации и давления в сепараторах
    2.5.2 Расчет сепаратора
    2.6 Расчет вспомогательного оборудования
    3. МЕХАНИЧЕСКАЯ ЧАСТЬ
    3.1 Исходные данные для конструктивного расчета аппарата
    3.2 Расчеты на прочность основных узлов и деталей аппаратов
    3.3 Эксплуатация оборудования
    3.4 Ремонт и монтаж оборудования
    3.4.1 Расчет такелажной оснастки
    3.5 Специальная часть. Расчет системы регулирования
  • Курсовая работа:

    Расчет и подбор тестомесильной машины А2-Т2-64

    33 страниц(ы) 

    Введение 4
    Литературный обзор 5
    Часть 1 Описание группы оборудования 5
    1.1 Классификация технологических машин 12
    Часть 2 Описание конкретной группы тестомесителей 16
    2.1 Машина тестосмесительная ТММ-1М 16
    2.3 Тестосмесительная машина Т2-М-63 17
    2.4 Тестомесильная машина А2-ХТМ 18
    2.5 Тестомесильная машина ХПО-3 со стационарной дежой 18
    2.5 Тестомесильная машина Ш2-ХТ2-И 21
    2.6 Тестомесильная машина TT-D50D 23
    Часть 3 Принципа работы тестомесильных машин 25
    3.1 Описание принципа тестомесильной машины А2-Т2-64 25
    3.2 Правила эксплуатации и техники безопасности 26
    3.3 Расчет тестомесильной машины А2-Т2-64 27
    Заключение 29
    Список литературы 32
    Ведомость технического проекта 33
  • Курсовая работа:

    Расчет экскаватора планировщика с базовой машиной МАЗ.

    47 страниц(ы) 

    ВВЕДЕНИЕ 4
    1 НАЗНАЧЕНИЕ ЭКСКАВАТОРА ПЛАНИРОВЩИКА 7
    2 КРАТКАЯ ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА 10
    3. ПРИНЦИП ДЕЙСТВИЯ ОДНОКОВШОВОГО ЭКСКАВАТОРА 13
    4. КИНЕМАТИЧЕСКАЯ СХЕМА ЭКСКАВАТОРА- ПЛАНИРОВЩИКА МАЗ - АНТЕЙ EW-25-M 16
    5. ГИДРАВЛИЧЕСКАЯ СИСТЕМА ЭКСКАВАТОРА 19
    5.1. Расчетная часть 22
    6. ТЕХНОЛОГИЧЕСКАЯ СХЕМА РАБОТЫ 35
    7. РАСЧЕТ ПРОИЗВОДИТЕЛЬНОСТИ 37
    8. БЕЗОПАСНОСТЬ ЗЕМЛЯНЫХ РАБОТ 39
    ЗАКЛЮЧЕНИЕ 44
    СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 46
  • Курсовая работа:

    Алкилирование изобутана изобутиленом до 2,2,4-триметилпентана (изооктана)

    27 страниц(ы) 

    1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ 3
    1.1 Физико-химические свойства сырья 4
    1.2 Физико-химические свойства целевого продукта и его применение 5
    1.4 Исторически очерк производства 8
    1.5 Основные промышленные способы производства 9
    1.6 Проблемы экологии и правила безопасности при производстве 11
    1.7 Технологическая схема и краткое описание процесса производства 12
    1.8 Основные технологические параметры влияющие на процесс 15
    1.9 Основной аппарат (реактор) 17
    2. ТЕХНОЛОГИЧЕСКИЕ РАСЧЕТЫ 19
    2.1 Исходные проектные данные 19
    2.2 Расчет материального баланса. 20
    2.3 Таблица материального баланса 22
    2.4 Технологические показатели процесса 22
    2.5 Предложения по снижению себестоимости целевого продукта 23
    2.6 Предложения по улучшению качества целевого продукта 23
    2.7 Совершенствование техноогического процесса 24
    СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 27
  • Курсовая работа:

    Противопожарное снабжение хозяйственно-питьевого, производственного и противопожарного водопровода низкого давления поселка и предприятия, расположенного вне населенного пункта

    43 страниц(ы) 

    1 Обоснование принятой схемы водоснабжения 2
    1.1 Исходные данные для разработки проекта 3
    2. Определение водопотребителей и расчет требуемого расхода воды на хозяйственно-питьевые и производственные нужды поселка и предприятия. 4
    2.1 Расчет необходимых расходов воды для поселка и предприятия 4
    2.2 Определение расчетных расходов воды на пожаротушение 9
    3. Гидравлический расчет водопроводной сети 12
    4. Определение режима работы НС - II 23
    5. Гидравлический расчет водоводов 27
    6. Расчет водонапорной башни 29
    6.1 Определение высоты водонапорной башни 29
    6.2 Определение емкости бака водонапорной башни 29
    7. Расчет резервуаров чистой воды 32
    8. Подбор насосов для насосной станции второго подъема 36
    9. Гидравлический расчет внутреннего объединенного хозяйственно-производственного и противопожарного водопровода производственного здания 38
    Список используемых источников 42