СтудСфера.Ру - помогаем студентам в учёбе

У нас можно недорого заказать курсовую, контрольную, реферат или диплом

Методика изучения гладкости обобщенного решения для эллиптического уравнения - Дипломная работа №33074

«Методика изучения гладкости обобщенного решения для эллиптического уравнения» - Дипломная работа

  • 40 страниц(ы)

Содержание

Введение

Выдержка из текста работы

Заключение

Список литературы

фото автора

Автор: navip

Содержание

Глава 1. Уравнения эллиптического типа 4

§1. Постановка краевых задач. Описание основного материала излагаемого в этой главе . . . . . . . . . . . . . . . . . . . . 4

§2. Обобщенные решения из W12 (Ω). Первое (энергетическое) неравенство . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

§3. Исследование разрешимости задачи Дирихле в пространстве W12 (Ω) (три теоремы Фредгольма) . . . . . . . . . . . . . . 11

§4. Второе основное неравенство для эллиптических операторов 21

§5. Разрешимость задачи Дирихле в пространстве W22 (Ω) . . . . 30


Введение

ГЛАВА 1

УРАВНЕНИЯ ЭЛЛИПТИЧЕСКОГО ТИПА

§1. Постановка краевых задач. Описание основного материала

излагаемого в этой главе

В данной главе мы рассматриваем линейные уравнения второго порядка

ℑu =Σni,j=1∂∂xi(aij(x)uxj+ai(x)u(x))+Σni=1

bi(x)uxi+a(x)u = f(x)+Σni=1

∂fi(x) ∂xi (1.1)

aij(x) = aji(x),

удовлетворяющие условию равномерной эллиптичности в ограниченной

области Ω евклидова пространства Rn. Равномерная эллиптичность (1.1)

в Ω означает выполнение неравенства

νξ2 6 aij(x)ξiξj 6 μξ2, ξ2 =

Σn

i=1

ξ2

i (1.2)

c каким-либо положительным постоянным ν и μ при ∀ x ∈ Ω и любых

вещественных параметрах ξ1 . . . ξn. Левое из неравенств (1.2) выражает

требование эллиптичности, правое – ограниченность коэффициентов aij(x).

Остальные коэффициенты уравнения (1.1) – ai, bi и a – мы также будем

считать ограниченными функциями в Ω, хотя приводимые ниже результаты

остаются справедливыми при более общих предположениях: принадлежности

этих коэффициентов к Lpk(Ω) с некоторыми pk, зависящими от n (подробнее

об этом см.[4]). Все функции, рассматриваемые в книге, являются измеримыми

(по Лебегу) функциями. Это свойство предполагается выполненным всюду

и специально в дальнейшем не оговаривается. Во многих параграфах

функции aij , ai и fi не обязаны иметь производные (даже обощенные).

Как понимать в этом случае уравнение (1.1), будет объяснено в следующем

параграфе. В тех случаях, когда aij , ai и fi имеют обощенные производные,

уравнение (1.1) может быть записано в традиционной форме:

ℑu = aijuxixj + ˜aiuxi + ˜au = ˜ f (1.1′)


Выдержка из текста работы

Для уравнений (1.1) (или (1.1′)) мы рассмотрим следующие три краевые

задачи:

1) задачу Дирихле (первую краевую задачу), состоящую в нахождении

функции u(x) удовлетворяющей в области Ω уравнению (1.1)(или (1.1′))

и на границе S области Ω краевому условию

u |s= φ(s), (1.3)

2)задачу Неймана (вторую краевую задачу), в которой ищется решение

u(x) уравнения (1.1)(или (1.1′)), удовлетворяющие краевому условию

∂u

∂N

|s= φ(s), (1.4)

где ∂u

∂N

≡ aijuxjni, а n = (n1, n2, . . . nn) — единичная нормаль к S

(направленная, как всегда, вне Ω) и

3)третью краевую задачу, в которой краевое условие имеет вид

∂u

∂N

+ σ(s)u |s= φ(s). (1.5)

Во всех этих задачах функция φ(s), равно как Ω, σ, f, fi и коэффициенты

уравнений, считаются известными. Подлежит определению лишь функция

u(x). Все перечисленные задачи могут быть сведены к задачам с однородными

краевыми условиями, т.е. к таким, в которых φ(s) ≡ 0. Действительно,

если вместо функции u(x) ввести новую неизвестную функцию ν(x) =

u(x) − Φ(x), где Φ(x) есть произвольная функция, удовлетворяющие

лишь взятому краевому условию (т.е.(1.3), (1.4) или (1.5)), то исходная

задача сведется к такой же задаче для функции ν(x), но с однородным

краевым условием. Уравнение для ν(x)

ℑν = ℜ +

∂ℜi

∂xi

(1.6)

отличается от (1.1) лишь свободными членами (правой частью), а именно,

в (1.6)

ℜ = f − biΦxi

− aΦ,ℜi = fi − aijΦxj

− aiΦ. (1.7)


Заключение

условия (2.3), (2.4), (4.2), и (5.1), а граница S удовлетворяет

условиям, при которых справедливо второе основное неравенство. Пусть,

далее, задача

ℑ0u = f, u|s = 0 (5.3)

имеет решения u(x) изW2

2,0(Ω) для какого-либо плотного в L2(Ω) множества

M элементов f(x).

Тогда задача

ℑτu = f, u|s = 0, где ℑτ = ℑ0 + τ (ℑ1 − ℑ0), (5.4)

однозначно разрешима в W2

2,0(Ω) для ∀f ∈ L2(Ω) при ∀τ ∈ [0, 1].

Из условий теоремы следует, что для ℑ0 справедливы неравенства

(5.1) и (5.2), т.е.

ℑ0(u, u) ≥ δ1∥u∥2, δ1 > 0, (5.5)

и

∥u∥(2)

2,Ω

≤ c∥ℑ0u∥ (5.6)

для ∀u ∈ W2

2,0(Ω). Благодаря (5.6) задача (5.3) однозначно разрешима в

W2

2,0(Ω) для ∀f ∈ L2(Ω). Действительно, для f из M разрешимость дана

одним из условий теоремы, а единственность следует из (5.6). Если же

∀f ∈ L2(Ω), но f ∈ M, то возьмем последовательность fm,m = 1, 2, .,

из M сходящуюся к f в норме L2(Ω). Для каждого из fm существует

решение um задачи (5.3) с f = fm, принадлежащие W2

2,0(Ω). В силу

линейности задачи разность uk − um есть решение задачи (5.3) с f =

fk − fm. Для нее верно неравенство (5.6), т.е.

∥uk − um∥(2)

2,Ω

≤ c∥fk − fm∥

из которого следует, что uk сходится в W2

2,0(Ω) к некоторому элементу и

u ∈ W2

2,0(Ω). В силу ограниченности коэффициентов ℑ0, функции ℑ0uk

сходятся в L2(Ω) к ℑ0u, т.е. ℑ0u = f. Итак, мы убедились, что для

∀f из L2(Ω) задача (5.3) имеет решение и из W2

2,0(Ω). Из (5.6) следует

его единственность в пространстве W2

2,0(Ω). Тем самым мы доказали,

что оператор ℑ0 устанавливает взаимно однозначное соответствие между

полными пространствами W2

2,0(Ω) и L2(Ω). Рассмотрим теперь семейство

операторов

ℑτ = ℑ0 + τ (ℑ1 − ℑ0), τ ∈ [0, 1]

Очевидно, ℑτ при τ = 0 совпадает с ℑ0, а при τ = 1 — с ℑ1. Покажем,

что при ℑτ при ∀τ из [0,1] устанавливает взаимно однозначное соответствие

между W2

2,0(Ω) и L2(Ω). Так как оператор ℑ0 обладает этим свойством,

то задача

ℑτu = f, u|s = 0 (5.7)

эквивалентна задаче

⌊E + τℑ−1

0 (ℑ1 − ℑ0)⌋u = ℑ−1

0 f (5.8)

в пространствеW2

2,0(Ω). Оператор ℑ−1

0 (ℑ1−ℑ0) является ограниченным в

W2

2,0(Ω), ибо в силу ограниченности коэффициентов ℑ1 и ℑ0 и неравенства

(5.6)

∥ℑ−1

0 (ℑ1 − ℑ0)u∥(2)

2,Ω

≤ c∥(ℑ1 − ℑ0)u∥ ≤ c1∥u∥(2)

2,Ω (5.9)

т.е. норма ∥ℑ−1

0 (ℑ1 − ℑ0)∥(2) в пространстве W2

2,0(Ω) не превосходит c1.

Благодаря этому уравнение (5.8) однозначно разрешимо при ∀τ1 < 1/c1,

т.е. операторы ℑτ при τ < 1/c1, устанавливают взаимно однозначное

соответствие между W2

2,0(Ω) и L2(Ω). Если число ∀τ < 1/c1, то возьмем

∀τ < 1/c1, и применим к (5.7) оператор ℑ−1

τ1 . Это в силу ℑτ = ℑτ1 + (τ −

τ1)(ℑ1 − ℑ0) дает уравнение

⌊E + (τ − τ1)ℑ−1

τ1 (ℑ1 − ℑ0)⌋u = ℑ−1

τ1 f (5.10)

эквивалентное задаче (5.7). Для исследования разрешимости (5.10) оценим

норму оператора ℑ−1

τ1 (ℑ1−ℑ0) в пространствеW2

2,0(Ω). Для этого заметим,

что из (5.1) для ℑ1 и ℑ0 следует неравенство

ℑτ (u, u) = (1 − τ )ℑ0(u, u) + τℑ1(u, u) ≥ δ1∥u∥2, (5.11)

а из условий (2.3), (2.4), и (4.2) для ℑ1 и ℑ0 — выполнение таких же

условий с теми же постоянными для всех ℑτ , τ ∈ [0, 1]. Благодаря этому

для ∀u ∈ W2

2,0(Ω) и всех операторов ℑτ , τ ∈ [0, 1] справедливо неравество

(5.6), т.е.

∥u∥(2)

2,Ω

≥ c∥ℑτu∥ (5.12)

с той же постоянной c, что и в (5.6).

Из (5.11) и (5.12), как показано в (5.9), следует оценка нормы ∥ℑ−1

τ (ℑ1−

ℑ0)u∥(2) ≤ c1, если ℑ−1

τ существует. Возвращаясь к (5.10), заключаем, что

уравнение (5.10) однозначно разрешимо для τ − τ1 < 1/c1, в частности,

для τ = 2τ1, если 2τ1 ≤ 1. Тем самым показано существование обратного

оператора ℑ2τ1 . Продолжая это процесс, мы за конечное число шагов

убедимся в существовании ℑ−1

τ для ∀τ ∈ [0, 1]. Теорема 5.1 доказана.

Для ее применения надо иметь разрешимость в W2

2,0(Ω) задачи (5.3)

для какого-либо оператора ℑ0, обладающего свойствами, требуемыми

теоремой 5.1. Если Ω есть шар Kp, или шаровой слой Kp,p1 = {x : p ≤ |x| ≤ p1}

или параллелепипед Π, то в качестве ℑ0 можно взять оператор Лапласа.

Действительно, для этих областей (а также для многих других) известна

полная система собственных функций {uk(x)} оператора Лапласа при

первом краевом условии, причем uk(x) суть бесконечно дифференцируемые

в ¯Ω функции. Благодаря этому решением задачи

Δu =

ΣN

k=1

ckuk(x), u|s = 0

при произвольных числах ck и ∀N ≥ 1 является

u =

ΣN

k=1

ck

λk

uk(x) ∈ W2

2,0(Ω),

где Δuk = λkuk, uk|s = 0, причем суммы

k=1

ckuk(x) плотны в L2(Ω). Все

остальные условия теоремы 5.1 для ℑ0 = Δ также, очевидно, выполнены,

надо только в качестве ν и μi для ℑ0 и ℑ1 взять подходящие постоянные.

Следовательно, в указанных областях в качестве ℑ0 можно взять Δ.

Аналогичное рассуждение верно и для областей, которые могут быть

невырожденным преобразованием переменных y = y(x) с y(x) ∈ C2(Ω)

преобразованы в одну из областей указанного вида3. Действительно,

переходя к переменным y в уравнении ℑu − λ0u = f, мы приходим

к уравнению eℑ u − λ0u = f, где eℑ u ≡ ∂

∂yi

(bijuyi) + biuyi + bu, bij =

akl

∂yi

∂xk

∂yi

∂xi

, bi = ak

∂yi

∂xk

−aij

∂yi

∂xj

∂yk

(

∂yk

∂xl

)

, b = a, в области eΩ изменения

y. Коэффициенты eℑ удовлетворяют условиям вида (2.3), (2.4), (4.2).

Благодаря этому для eℑ ≡ eℑ − λ0E с достаточно большим λ0 будут

справедливы неравенства (5.1), (5.2) (вообще говоря, с другими постоянными),

а потому и теорема 5.1. В качестве eℑ 0 можно взять оператор

Σn

i=1

∂2

∂y2

i

λ0E. Тогда теорема 5.1 гарантирует однозначную разрешимость вW2

2,0(eΩ)

задачи

(eℑ − λ0E)u = f, u|

∂eℑ = 0 (5.13)

Возвращаясь к переменным x, убеждаемся, что задача

(ℑ − λ0E)u = f, u|s = 0 (5.14)

однозначно разрешима в W2

2,0(Ω). Итак, доказана.

Теорема 5.2.Если коэффициенты ℑ из (4.1) удовлетворяют условиям

(2.3), (2.4), и (4.2), f ∈ L2(Ω), а область Ω есть шар, или шаровой

слой, или параллелепипед, или может быть преобразована в одну из этих

областей с помощью регулярного преобразования y = y(x) ∈ C2(Ω), то

задача (5.14) однозначно разрешима в W2

2,0(Ω) для достаточно больших

λ0.

Возьмем теперь произвольное обощенное решение u(x) изW1

2 (Ω) задачи

(ℑ − λ0E)u = f, u|s = 0 (5.15)

с f ∈ L2(Ω). Его можно рассмотреть как обобщенное решение из W1

2 (Ω)

задачи (5.14) со свободным членом, равным f+(λ−λ0)u ∈ L2(Ω). В силу

теорем 5.2 и 2.1 эта задача разрешима в W2

2,0(Ω) и для нее имеет место

теорема единственности в классе W1

2 (Ω). Следовательно, взятое нами

Т.е. функция y = y(x) должна давать диффеоморфное отображение ¯Ω на ˜ Ω, y(x) ∈ C2(¯Ω) и

якобианы ∂(y)

∂(x)

и ∂(x)

∂(y)

должны быть строго положительными.

u(x) будет принадлежать W2

2,0(Ω). Таким образом, доказана следующая

теорема:

Теорема 5.3.Если для ℑ, f и Ω выполнены условия теоремы 5.2, то

любое обобщенное решение из W1

2 (Ω) задачи (5.15) является элементом

W2

2,0(Ω).

Из этой теоремы и результатов §3 о фредгольмовой разрешимости

задачи

ℑu = λu + f, u|s = 0 (5.16)

в пространстве W1

2 (Ω) следует, что при выполнении условий теоремы 5.3

эта задача фредгольмово разрешима и в пространстве W2

2,0(Ω). Спектр

ее {λk}, k = 1, 2., то оператор ℑ − λE имеет ограниченный обратный,

что в условиях теоремы 5.3 гарантирует наличие оценки

∥u∥(2)

2,Ω

≥ cλ∥(ℑ − λE)u∥ (5.17)

Постоянную cλ в общем случае мы не можем выписать явно через

коэффициенты ℑ − λE и S, как это было сделано в §6 в случае (6.9),

однако ее существование гарантировано теоремами Фредгольма.

Замечание 5.1.Теорема 5.3 показывает, что увеличение ≪гладкости≫ коэффициентов

ℑ, f и Ω гарантирует увеличение гладкости всех обобщенных решений из

W1

2 (Ω) уравнений (5.15)4. Можно показать, что это улучшение свойств

решений имеет локальный характер. Именно, если коэффициенты ℑ и

f удовлетворяют условиям теоремы 5.2 лишь в какой-либо области Ω1

области Ω, то ∀ обобщенное решение u ∈ W1

2 (Ω) уравнения (5.15) будет

элементом W2

2 (Ω′

1) для ∀Ω′

1

⊂ Ω1. Если же Ω1 примыкает к границе

Ω по куску S1 ⊂ S, и ℑ, f и Ω1 удовлетворяют условиям теоремы 5.2,

то ∀ обощенное решение u(x) ∈ W1

2 (Ω) будет элементом W2

2 (eΩ1) для

∀eΩ1 ⊂ Ω1, отстоящей от части границы Ω1, не принадлежащей S, на

положительное расстояние. Из этих результатов следует, что теоремы 5.2

и 5.3 справедливы для более широкого класса областей Ω, а именно, для

областей, которые можно представить в виде суммы

N∪

i=1

Ωi областей Ωi,


Список литературы

1. Бернштейн С.Н. Исследование и интегрирование дифференциальных уравнений с частными производными второго порядка эллиптического типа. — Харьков, 1908.

2. Ладыженская О.А. Краевые задачи математической физики. — М.: Наука, 1973 г. – 408с.

3. Ладыженская О.А. О замыкании эллиптического оператора // ДАН СССР 79, №5, 1951, С. 723-725.

4. Ладыженская О.А., Уральцева Н.Н., Солонников В.А. Линейные и квазилинейные уравнения эллиптического типа. — М.: Наука, 1973 г., второе издание.

5. Смирнов В.И. Курс высшей математики. — М.: Физматгиз, 1959.


Тема: «Методика изучения гладкости обобщенного решения для эллиптического уравнения»
Раздел: Математика
Тип: Дипломная работа
Страниц: 40
Цена: 950 руб.
Нужна похожая работа?
Закажите авторскую работу по вашему заданию.
  • Цены ниже рыночных
  • Удобный личный кабинет
  • Необходимый уровень антиплагиата
  • Прямое общение с исполнителем вашей работы
  • Бесплатные доработки и консультации
  • Минимальные сроки выполнения

Мы уже помогли 24535 студентам

Средний балл наших работ

  • 4.89 из 5
Узнайте стоимость
написания вашей работы
Похожие материалы
  • Дипломная работа:

    Оценки решения одной краевой задачи для дифференциального уравнения второго порядка

    32 страниц(ы) 

    Введение….3

    Глава I Краевые задачи для эллиптических дифференциальных уравнений второго порядка
    1.1 Классификация дифференциальных уравнений второго порядка….5
    1.2 Основные обозначения и термины. Класс функций . Определение непрерывности функций по Гельдеру….7
    1.3 Принцип максимума для эллиптических уравнений…8
    1.4 Теоремы существования решений для эллиптических уравнений….10
    1.5 Критерий компактности…12
    1.6 Теорема Лагранжа о конечных приращениях….12
    Глава II Оценки решений краевой задачи для одного эллиптического уравнения второго порядка
    2.1 Постановка задачи….15
    2.2 Существование и единственность решения краевой задачи …15
    2.3 Оценки решения краевой задачи….21
    Заключение….27
    Список литературы….….29
    Приложение….31
  • Дипломная работа:

    Оценки решений краевой задачи для одного класса дифференциальных уравнений второго порядка

    32 страниц(ы) 

    Введение…. 3
    Глава I. Краевые задачи для эллиптических дифференциальных уравнений второго порядка
    1.1 Классификация дифференциальных уравнений второго порядка …. 5
    1.2 Класс функций . Определение непрерывности функций по Гельдеру ….…. 7
    1.3 Принцип максимума для эллиптических уравнений…. 8
    1.4 Теорема существования решения для эллиптических уравнений… 10
    1.5 Критерий компактности …. 12
    1.6 Теорема Лагранжа о конечных приращениях … 12
    Глава II. Оценки решений краевой задачи для одного эллиптического уравнения второго порядка
    2.1 Постановка задачи …. 14
    2.2 Доказательство существования и единственности решения краевой задачи … 15
    2.3 Оценки решения краевой задачи …. 21
    Заключение …. 27
    Литература ….…. 28
    Приложение (графики)….…. 29
  • Дипломная работа:

    Решение краевых задач дифференциального уравне-ния второго порядка

    29 страниц(ы) 

    Введение….….3

    Глава I Краевые задачи для эллиптических дифференциальных уравнений второго порядка
    1.1 Классификация дифференциальных уравнений второго порядка….5
    1.2 Основные обозначения и термины. Класс функций . Определе-ние непрерывности функций по Гёльдеру… … ….7
    1.3 Принцип максимума для эллиптических уравнений….…8
    1.4 Теоремы существования решений для эллиптических уравне-ний….11
    1.5 Критерий компактности….12
    Глава II Оценки решений краевой задачи для одного эллиптического уравнения второго порядка
    2.1 Постановка задачи….….13
    2.2 Существование и единственность решения краевой задачи ….…14
    2.3 Оценки решения краевой зада-чи….20
    Заключение….….25
    Список литературы….….26
    Приложение….27
  • Дипломная работа:

    Методика изучения колеблющихся решений нелинейного разностного уравнения

    46 страниц(ы) 

    Введение….….3
    Глава 1. Понятие разностного уравнения, его решения и колеблемости решений…5
    1.1 Некоторые обозначения и определения….….….5
    1.2 Понятие разностного уравнения и его порядок ….….6
    1.3 Линейные уравнения первого порядка….14
    1.3.1 Однородное линейное уравнение….14
    1.3.2 Неоднородное линейное уравнение….15
    1.4 Понятие колеблемости решений разностного уравнения. Колеблю-щиеся свойства решений одного нелинейного разностного уравнения…17
    Глава II. Методика изучения колеблющихся свойств решений одного конечного разностного уравнения….23
    2.1 Вспомогательные предложения….24
    2.2 Некоторые вопросы колеблемости…29
    2.3 Основные результаты….30
    Заключение….38
    Литература….39
  • Дипломная работа:

    Решение краевой задачи для одного дифференциального уравнения эллиптического типа

    32 страниц(ы) 

    Введение….….3
    Глава I
    Краевые задачи для эллиптических дифференциальных уравнений второго порядка
    1.1 Классификация дифференциальных уравнений
    второго порядка. Уравнения с двумя неизвестными…5
    1.2 Класс функций . Определение непрерывности по Гельдеру…7
    1.3 Принцип максимума для эллиптических уравнений….8
    1.4 Теорема существования решения для эллиптических уравнений….10
    1.5 Критерий компактности….11
    Глава II
    Оценки решения краевой задачи для одного эллиптического уравнения второго порядка
    1.6 Постановка задачи….13
    1.7 Существование и единственность решения краевой задачи….13
    1.8 Уточнение оценки решения краевой задачи….19
    Заключение….27
    Список литературы….….28
    Приложение….….29
  • Дипломная работа:

    Методика изучения числовых систем в общеобразовательной школе

    92 страниц(ы) 

    Введение….4
    Глава 1. Методика изучения числовых систем в основной школе….8
    1.1. Различные схемы расширения понятия числа….8
    1.2. Методика изучения натуральных чисел и нуля….10
    1.3. Теория делимости целых чисел….14
    1. 3.1. Понятие делимости…14
    1.3.2. Деление с остатком….16
    1.3.3. Признаки делимости….18
    1.3.4. Наибольший общий делитель нескольких натуральных чисел (Н.О.Д.)….23
    1.3.5. Наименьшее общее кратное нескольких натуральных чисел (Н.О.К.)….25
    1.4. Методика изучения дробей…26
    1.4.1. Действия над дробями. Сложение и вычитание дробей….28
    1.4.2. Умножение дроби на целое число….31
    1.4.3. Деление дроби на целое число….33
    1.4.4. Умножение на дробь….36
    1.4.5. Деление на дробь….41
    1.5. Методика введения отрицательных чисел и изучение действий над рациональными числами. ….45
    1.6. Методика изучения действительных чисел….52
    Глава 2. Методика изучения числовых систем в старшей школе…55
    2.1. Методика введения комплексных чисел….55
    Глава 3. Задачи повышенной трудности…57
    3.1. Уравнения и неравенства в целых числах….57
    3.1.1. Соображения делимости и основная теорема арифметики….57
    3.1.2. Метод разложения на множители….60
    3.1.3. Метод решения уравнения относительно одного из неизвестных….61
    3.1.4. Графический метод решения….63
    3.1.5. Использование принципа математической индукции….67
    3.1.6. Многочлены и уравнения высших степеней. Делимость двучленов. на ….70
    3.2. Решение задач….73
    Заключение….84
    Литература….85

Не нашли, что искали?

Воспользуйтесь поиском по базе из более чем 40000 работ

Наши услуги
Дипломная на заказ

Дипломная работа

от 8000 руб.

срок: от 6 дней

Курсовая на заказ

Курсовая работа

от 1500 руб.

срок: от 3 дней

Отчет по практике на заказ

Отчет по практике

от 1500 руб.

срок: от 2 дней

Контрольная работа на заказ

Контрольная работа

от 100 руб.

срок: от 1 дня

Реферат на заказ

Реферат

от 700 руб.

срок: от 1 дня

Другие работы автора
  • Курсовая работа:

    Экологизация содержания карт природы

    40 страниц(ы) 

    ВВЕДЕНИЕ…. 3
    ГЛАВА 1. ЭКОЛОГИЧЕСКИЕ КАРТЫ: СУЩНОСТЬ, КЛАССИФИКАЦИИ И ОБЛАСТИ ПРИМЕНЕНИЯ….….4
    1.1. СУЩНОСТЬ ЭКОЛОГИЧЕСКИХ КАРТ….…. 4
    1.2. КЛАССИФИКАЦИЯ ЭКОЛОГИЧЕСКИХ КАРТ….… 6
    1.3. ОБЛАСТИ ПРИМЕНЕНИЯ ЭКОЛОГИЧЕСКИХ КАРТ.….…. 23
    ГЛАВА 2. ЭКОЛОГИЗАЦИЯ СОДЕРЖАНИЯ КАРТ ПРИРОДЫ. 25
    2.1 АНТРОПОЦЕНТРИЗМ И БИОЦЕНТРИЗМ ТЕМАТИЧЕСКОЙ КАРТОГРАФИИ.25
    2.2. ОСНОВНЫЕ НАПРАВЛЕНИЯ И МЕТОДЫ РАЗРАБОТКИ ЭКОЛОГИЧЕСКИХ КАРТ.27
    2.3. ЭКОЛОГИЗАЦИЯ СОДЕРЖАНИЯ КАРТ ПРИРОДЫ. 34
    ЗАКЛЮЧЕНИЕ…. 38
    СПИСОК ЛИТЕРАТУРЫ…. 39
  • Дипломная работа:

    Изучении флоры почвенных водорослей и цианобактерий техногенно-засолehой территории предприятия ао «сырьевая компания»

    83 страниц(ы) 

    ВВЕДЕНИЕ 3
    ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ 5
    1.1 . Характеристика Стерлитамакского района 5
    1.1.1 Климат 9
    1.1.2 Рельеф и почвенный состав 10
    1.1.3 Гидрология 15
    1.1.4 Животный мир 16
    1.1.5 Растительный мир 17
    1.2 Характеристика Ишимбайского района 19
    1.2.1 Климат 21
    1.2.2 Рельеф и почвенный состав 21
    1.2.3 Гидрология 21
    1.2.4 Животный мир 22
    1.2.5 Растительный мир 22
    1.3 Характеристика АО «Сырьевая компания» 22
    ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ 27
    2.1 . Объект исследования 27
    2.2 . Методика отбора проб и посев культур 29
    2.3 Методика просмотра 31
    2.4 Методика выделения 32
    2.5 Анализ жизненных форм 32
    ГЛАВА 3. ВИДОВОЙ СОСТАВ ПОЧВЕННЫХ ВОДОРОСЛЕЙ И ЦИАНОБАКТЕРИЙ ИССЛЕДУЕМОЙ ТЕРРИТОРИИ 34
    ВЫВОДЫ 78
    СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 80
  • Курсовая работа:

    Фразеологические единицы современного английского и русского языка

    33 страниц(ы) 

    Введение….3
    Глава 1. Основные положения о фразеологизмах….6
    1.1. Определение фразеологической единицы….6
    1.2.Структурно – семантическая характеристика фразеологизмов….….7
    1.3. Происхождение фразеологических числительных единиц современного английского языка….10
    Глава 2. Анализ фразеологических единиц с компонентом «один»….…19
    2.1. Фразеологизмы английского языка с компонентом «один»….19
    2.2.Фразеологизмы русского языка с компонентом «один»….21
    2.3.Сравнительный анализ фразеологизмов с компонентом «один» в английском и русском языках…24
    Заключение….31
    Список литературы….….33
  • Дипломная работа:

    Развитие творческих способностей учащихся на уроках русского языка как неродного

    70 страниц(ы) 

    ВВЕДЕНИЕ….….3
    ГЛАВА I. Теоретический обзор развития творческих способностей учащихся на уроках русского языка как неродного…8
    1.1 Сущность понятия творческие способности учащихся….8
    1.2 Компоненты творческих способностей…16
    1.3 Условия развития творческих способностей учащихся на уроках русского языка как неродного….24
    ГЛАВА II. Методические основы развития творческих способностей на уроках русского языка как неродного….42
    2.1Элементы педагогических технологий, направленных на развитие творческих способностей школьников….42
    2.2Развитие творческих способностей учащихся в процессе выполнения творческих заданий…50
    ЗАКЛЮЧЕНИЕ….58
    СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ….…61
    ПРИЛОЖЕНИЕ 1…66
    ПРИЛОЖЕНИЕ 2…67
  • Дипломная работа:

    Проблема перевода юридической документации с английского языка на русский язык

    77 страниц(ы) 

    ВВЕДЕНИЕ….…3
    ГЛАВА I
    ОСОБЕННОСТИ ЮРИДИЧЕСКОЙ ДОКУМЕНТАЦИИ….5
    1.1 Терминологические особенности английского юридического языка….5
    1.2 Терминология юридических документов….7
    1.3 Особенности терминообразования в юридической документации….18
    ВЫВОДЫ…22
    ГЛАВА II
    ПЕРЕВОДЧЕСКИЕ РЕШЕНИЯ ПРИ ПЕРЕВОДЕ ЮРИДИЧЕСКИХ ДОКУМЕНТОВ….….24
    2.1 Переводческие трансформации….….…24
    2.2 Терминологическая дифференциация юридических текстов в лингводидактическом аспекте….33
    2.3 Особенность перевода юридической документации….38
    ВЫВОДЫ….46
    ГЛАВА III
    ОСОБЕННОСТЬ ПЕРЕВОДА ТАМОЖЕННЫХ ДОКУМЕНТОВ США И ЕВРОПЫ….47
    3.1 Юридическая документация для растаможивания автомобилей и товаров при вывозе из США и Европы….47
    3.2 Примеры переводов документов на товары и автомобили из Европы и США….50
    ВЫВОДЫ….55
    ЗАКЛЮЧЕНИЕ….56
    СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ….58
    ПРИЛОЖЕНИЕ….62
  • Курсовая работа:

    Составление программы с использованием языка Pasсal

    19 страниц(ы) 

    §1.Алгоритм решения задачи. 7
    §2.Программа. 8
    §3.Результаты. 10
    §4.Описание используемых операторов. 11
    §5.Литература. 19
  • Дипломная работа:

    Формирование у младших школьников грамматических навыков посредством интерактивных технологий на уроках английского языка

    98 страниц(ы) 

    Введение….….3
    Глава 1. Интерактивные технологии как средство обучения иностранным языкам
    1.1. Технология как педагогическое понятие….6
    1.2. Классификация педагогических технологий…11
    1.3. Потенциал интерактивных технологий в обучении иностранным языкам…17
    Выводы по главе 1…23
    Глава 2. Методика формирования грамматических навыков в начальной школе
    2.1. Цели и содержание обучения грамматической стороне речи в соответствии с требованиями программ…24
    2.2. Технологии формирования грамматических навыков у младших школьников….….30
    2.3. Интерактивные технологии в формировании грамматических навыков у младших школьников….36
    Выводы по главе 2….…43
    Глава 3. Опытно-экспериментальная работа по формированию грамматических навыков в МБОУ СОШ №18 г. Ишимбай
    3.1. Анализ УМК по английскому языку для 3 класса….….…45
    3.2. Апробация интерактивных технологий в образовательном процессе….….….50
    Выводы по главе 3…58
    Заключение…60
    Список использованной литературы….62
    Приложения….68
  • ВКР:

    «Технология создания керамического светильника»

    51 страниц(ы) 

    ВВЕДЕНИЕ 3-4
    Глава I. ХУДОЖЕСТВЕННАЯ КЕРАМИКА, КАК ВИД ДЕКОРАТИВНО ПРИКЛАДНОГО ИСКУССТВА
    1.1. История развития художественной керамики 5-8
    1.2. Керамика в России 9-12
    1.3. Светильник, как предмет декоративно прикладного искусства и дизайна 13-17
    1.4. Материалы и техники изготовления керамических изделий 18-22
    1.5. Техники декорирования керамики 23-27
    Глава II. ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ КЕРАМИЧЕСКОГО СВЕТИЛЬНИКА
    2.1. Основные этапы процесса изготовления светильника 28-31
    2.2. Методические рекомендации по применению разработки в педагогической практике 32-38
    ЗАКЛЮЧЕНИЕ 39-40
    СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 41-42
    ПРИЛОЖЕНИЕ 43-51
  • Курсовая работа:

    Gottfried leibniz готфрид лейбниц

    11 страниц(ы) 

    АННОТАЦИЯ И КЛЮЧЕВЫЕ СЛОВА / SUMMARY AND KEY WORDS….….…3
    GOTTFRIED LEIBNIZ ….….….….4
    ГОТФРИД ЛЕЙБНИЦ….….5
    СЛОВАРЬ ТЕРМИНОВ / GLOSSARY…7
    ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА / REFERENCES….…10
  • ВКР:

    Технология создания текстильных изделий для интерьера в стиле «восток»

    60 страниц(ы) 

    ВВЕДЕНИЕ 3
    ГЛАВА I. ОСОБЕННОСТИ СОЗДАНИЯ ДЕКОРАТИВНОГО ТЕКСТИЛЯ В ИНТЕРЬЕРЕ 6
    1.1. Особенности использования текстиля в интерьере 6
    1.2. Композиция и колорит в текстиле 9
    1.3. Текстиль с восточным колоритом: направления, идеи и особенности 13
    ГЛАВА II. РОСПИСЬ ТКАНИ КАК ОДИН ИЗ ВИДОВ ДЕКОРИРОВАНИЯ ТЕКСТИЛЯ 19
    2.1 История возникновения и виды росписи по ткани 19
    2.2 Материалы и инструменты 26
    2.3 Технология создания декоративного текстиля для интерьера в стиле «Восток» 30
    2.4 Конспект урока «Холодный батик - роспись по шёлку» 34
    Заключение 44
    Список использованной литературы 46
    Приложение 47